AxibugEmuOnline/AxibugEmuOnline.Client/Assets/VirtualNes.Core/ApuEX/APU_FDS.cs

520 lines
19 KiB
C#

using System;
using System.IO;
namespace VirtualNes.Core
{
public class APU_FDS : APU_INTERFACE
{
FDSSOUND fds = new FDSSOUND();
FDSSOUND fds_sync = new FDSSOUND();
int[] output_buf = new int[8];
int sampling_rate;
public APU_FDS()
{
fds.ZeroMemory();
fds_sync.ZeroMemory();
Array.Clear(output_buf, 0, output_buf.Length);
sampling_rate = 22050;
}
public override void Reset(float fClock, int nRate)
{
fds.ZeroMemory();
fds_sync.ZeroMemory();
sampling_rate = 22050;
}
public override void Setup(float fClock, int nRate)
{
sampling_rate = nRate;
}
int[] tbl_writesub = { 30, 20, 15, 12 };
private void WriteSub(ushort addr, byte data, FDSSOUND ch, double rate)
{
if (addr < 0x4040 || addr > 0x40BF)
return;
ch.reg[addr - 0x4040] = data;
if (addr >= 0x4040 && addr <= 0x407F)
{
if (ch.wave_setup != 0)
{
ch.main_wavetable[addr - 0x4040] = 0x20 - (data & 0x3F);
}
}
else
{
switch (addr)
{
case 0x4080: // Volume Envelope
ch.volenv_mode = (byte)(data >> 6);
if ((data & 0x80) != 0)
{
ch.volenv_gain = (byte)(data & 0x3F);
// 即時反映
if (ch.main_addr == 0)
{
ch.now_volume = (ch.volenv_gain < 0x21) ? ch.volenv_gain : 0x20;
}
}
// エンベロープ1段階の演算
ch.volenv_decay = (byte)(data & 0x3F);
ch.volenv_phaseacc = (double)ch.envelope_speed * (double)(ch.volenv_decay + 1) * rate / (232.0 * 960.0);
break;
case 0x4082: // Main Frequency(Low)
ch.main_frequency = (ch.main_frequency & ~0x00FF) | data;
break;
case 0x4083: // Main Frequency(High)
ch.main_enable = (byte)((~data) & (1 << 7));
ch.envelope_enable = (byte)((~data) & (1 << 6));
if (ch.main_enable == 0)
{
ch.main_addr = 0;
ch.now_volume = (ch.volenv_gain < 0x21) ? ch.volenv_gain : 0x20;
}
// ch.main_frequency = (ch.main_frequency&0x00FF)|(((INT)data&0x3F)<<8);
ch.main_frequency = (ch.main_frequency & 0x00FF) | ((data & 0x0F) << 8);
break;
case 0x4084: // Sweep Envelope
ch.swpenv_mode = (byte)(data >> 6);
if ((data & 0x80) != 0)
{
ch.swpenv_gain = (byte)(data & 0x3F);
}
// エンベロープ1段階の演算
ch.swpenv_decay = (byte)(data & 0x3F);
ch.swpenv_phaseacc = (double)ch.envelope_speed * (double)(ch.swpenv_decay + 1) * rate / (232.0 * 960.0);
break;
case 0x4085: // Sweep Bias
if ((data & 0x40) != 0) ch.sweep_bias = (data & 0x3f) - 0x40;
else ch.sweep_bias = data & 0x3f;
ch.lfo_addr = 0;
break;
case 0x4086: // Effector(LFO) Frequency(Low)
ch.lfo_frequency = (ch.lfo_frequency & (~0x00FF)) | data;
break;
case 0x4087: // Effector(LFO) Frequency(High)
ch.lfo_enable = (byte)((~data & 0x80));
ch.lfo_frequency = (ch.lfo_frequency & 0x00FF) | ((data & 0x0F) << 8);
break;
case 0x4088: // Effector(LFO) wavetable
if (ch.lfo_enable == 0)
{
// FIFO?
for (byte i = 0; i < 31; i++)
{
ch.lfo_wavetable[i * 2 + 0] = ch.lfo_wavetable[(i + 1) * 2 + 0];
ch.lfo_wavetable[i * 2 + 1] = ch.lfo_wavetable[(i + 1) * 2 + 1];
}
ch.lfo_wavetable[31 * 2 + 0] = (byte)(data & 0x07);
ch.lfo_wavetable[31 * 2 + 1] = (byte)(data & 0x07);
}
break;
case 0x4089: // Sound control
{
ch.master_volume = tbl_writesub[data & 3];
ch.wave_setup = (byte)(data & 0x80);
}
break;
case 0x408A: // Sound control 2
ch.envelope_speed = data;
break;
default:
break;
}
}
}
public override void Write(ushort addr, byte data)
{
WriteSub(addr, data, fds, sampling_rate);
}
public override byte Read(ushort addr)
{
byte data = (byte)(addr >> 8);
if (addr >= 0x4040 && addr <= 0x407F)
{
data = (byte)(fds.main_wavetable[addr & 0x3F] | 0x40);
}
else
if (addr == 0x4090)
{
data = (byte)((fds.volenv_gain & 0x3F) | 0x40);
}
else
if (addr == 0x4092)
{
data = (byte)((fds.swpenv_gain & 0x3F) | 0x40);
}
return data;
}
int[] tbl_process = { 0, 1, 2, 4, 0, -4, -2, -1 };
public override int Process(int channel)
{
// Envelope unit
if (fds.envelope_enable != 0 && fds.envelope_speed != 0)
{
// Volume envelope
if (fds.volenv_mode < 2)
{
double decay = ((double)fds.envelope_speed * (double)(fds.volenv_decay + 1) * (double)sampling_rate) / (232.0 * 960.0);
fds.volenv_phaseacc -= 1.0;
while (fds.volenv_phaseacc < 0.0)
{
fds.volenv_phaseacc += decay;
if (fds.volenv_mode == 0)
{
// 減少モード
if (fds.volenv_gain != 0)
fds.volenv_gain--;
}
else
if (fds.volenv_mode == 1)
{
if (fds.volenv_gain < 0x20)
fds.volenv_gain++;
}
}
}
// Sweep envelope
if (fds.swpenv_mode < 2)
{
double decay = ((double)fds.envelope_speed * (double)(fds.swpenv_decay + 1) * (double)sampling_rate) / (232.0 * 960.0);
fds.swpenv_phaseacc -= 1.0;
while (fds.swpenv_phaseacc < 0.0)
{
fds.swpenv_phaseacc += decay;
if (fds.swpenv_mode == 0)
{
// 減少モード
if (fds.swpenv_gain != 0)
fds.swpenv_gain--;
}
else
if (fds.swpenv_mode == 1)
{
if (fds.swpenv_gain < 0x20)
fds.swpenv_gain++;
}
}
}
}
// Effector(LFO) unit
int sub_freq = 0;
// if( fds.lfo_enable && fds.envelope_speed && fds.lfo_frequency ) {
if (fds.lfo_enable != 0)
{
if (fds.lfo_frequency != 0)
{
fds.lfo_phaseacc -= (1789772.5 * (double)fds.lfo_frequency) / 65536.0;
while (fds.lfo_phaseacc < 0.0)
{
fds.lfo_phaseacc += (double)sampling_rate;
if (fds.lfo_wavetable[fds.lfo_addr] == 4)
fds.sweep_bias = 0;
else
fds.sweep_bias += tbl_process[fds.lfo_wavetable[fds.lfo_addr]];
fds.lfo_addr = (fds.lfo_addr + 1) & 63;
}
}
if (fds.sweep_bias > 63)
fds.sweep_bias -= 128;
else if (fds.sweep_bias < -64)
fds.sweep_bias += 128;
int sub_multi = fds.sweep_bias * fds.swpenv_gain;
if ((sub_multi & 0x0F) != 0)
{
// 16で割り切れない場合
sub_multi = (sub_multi / 16);
if (fds.sweep_bias >= 0)
sub_multi += 2; // 正の場合
else
sub_multi -= 1; // 負の場合
}
else
{
// 16で割り切れる場合
sub_multi = (sub_multi / 16);
}
// 193を超えると-258する(-64へラップ)
if (sub_multi > 193)
sub_multi -= 258;
// -64を下回ると+256する(192へラップ)
if (sub_multi < -64)
sub_multi += 256;
sub_freq = (fds.main_frequency) * sub_multi / 64;
}
// Main unit
int output = 0;
if (fds.main_enable != 0 && fds.main_frequency != 0 && fds.wave_setup == 0)
{
int freq;
int main_addr_old = fds.main_addr;
freq = (int)((fds.main_frequency + sub_freq) * 1789772.5 / 65536.0);
fds.main_addr = (fds.main_addr + freq + 64 * sampling_rate) % (64 * sampling_rate);
// 1周期を超えたらボリューム更新
if (main_addr_old > fds.main_addr)
fds.now_volume = (fds.volenv_gain < 0x21) ? fds.volenv_gain : 0x20;
output = fds.main_wavetable[(fds.main_addr / sampling_rate) & 0x3f] * 8 * fds.now_volume * fds.master_volume / 30;
if (fds.now_volume != 0)
fds.now_freq = freq * 4;
else
fds.now_freq = 0;
}
else
{
fds.now_freq = 0;
output = 0;
}
// LPF
output = (output_buf[0] * 2 + output) / 3;
output_buf[0] = output;
fds.output = output;
return fds.output;
}
internal void SyncWrite(ushort addr, byte data)
{
WriteSub(addr, data, fds_sync, 1789772.5d);
}
internal byte SyncRead(ushort addr)
{
byte data = (byte)(addr >> 8);
if (addr >= 0x4040 && addr <= 0x407F)
{
data = (byte)(fds_sync.main_wavetable[addr & 0x3F] | 0x40);
}
else
if (addr == 0x4090)
{
data = (byte)((fds_sync.volenv_gain & 0x3F) | 0x40);
}
else
if (addr == 0x4092)
{
data = (byte)((fds_sync.swpenv_gain & 0x3F) | 0x40);
}
return data;
}
public override bool Sync(int cycles)
{
// Envelope unit
if (fds_sync.envelope_enable != 0 && fds_sync.envelope_speed != 0)
{
// Volume envelope
double decay;
if (fds_sync.volenv_mode < 2)
{
decay = ((double)fds_sync.envelope_speed * (double)(fds_sync.volenv_decay + 1) * 1789772.5) / (232.0 * 960.0);
fds_sync.volenv_phaseacc -= (double)cycles;
while (fds_sync.volenv_phaseacc < 0.0)
{
fds_sync.volenv_phaseacc += decay;
if (fds_sync.volenv_mode == 0)
{
// 減少モード
if (fds_sync.volenv_gain != 0)
fds_sync.volenv_gain--;
}
else
if (fds_sync.volenv_mode == 1)
{
// 増加モード
if (fds_sync.volenv_gain < 0x20)
fds_sync.volenv_gain++;
}
}
}
// Sweep envelope
if (fds_sync.swpenv_mode < 2)
{
decay = ((double)fds_sync.envelope_speed * (double)(fds_sync.swpenv_decay + 1) * 1789772.5) / (232.0 * 960.0);
fds_sync.swpenv_phaseacc -= (double)cycles;
while (fds_sync.swpenv_phaseacc < 0.0)
{
fds_sync.swpenv_phaseacc += decay;
if (fds_sync.swpenv_mode == 0)
{
// 減少モード
if (fds_sync.swpenv_gain != 0)
fds_sync.swpenv_gain--;
}
else
if (fds_sync.swpenv_mode == 1)
{
// 増加モード
if (fds_sync.swpenv_gain < 0x20)
fds_sync.swpenv_gain++;
}
}
}
}
return false;
}
public override int GetFreq(int channel)
{
return fds.now_freq;
}
public override uint GetSize()
{
return fds.GetSize() + fds_sync.GetSize();
}
public override void SaveState(StateBuffer buffer)
{
fds.SaveState(buffer);
fds_sync.SaveState(buffer);
}
private class FDSSOUND : IStateBufferObject
{
public byte[] reg = new byte[0x80];
public byte volenv_mode; // Volume Envelope
public byte volenv_gain;
public byte volenv_decay;
public double volenv_phaseacc;
public byte swpenv_mode; // Sweep Envelope
public byte swpenv_gain;
public byte swpenv_decay;
public double swpenv_phaseacc;
// For envelope unit
public byte envelope_enable; // $4083 bit6
public byte envelope_speed; // $408A
// For $4089
public byte wave_setup; // bit7
public int master_volume; // bit1-0
// For Main unit
public int[] main_wavetable = new int[64];
public byte main_enable;
public int main_frequency;
public int main_addr;
// For Effector(LFO) unit
public byte[] lfo_wavetable = new byte[64];
public byte lfo_enable; // 0:Enable 1:Wavetable setup
public int lfo_frequency;
public int lfo_addr;
public double lfo_phaseacc;
// For Sweep unit
public int sweep_bias;
// Misc
public int now_volume;
public int now_freq;
public int output;
public void ZeroMemory()
{
Array.Clear(reg, 0, reg.Length);
volenv_mode = 0;
volenv_gain = 0;
volenv_decay = 0;
volenv_phaseacc = 0.0;
swpenv_mode = 0;
swpenv_gain = 0;
swpenv_decay = 0;
swpenv_phaseacc = 0.0;
envelope_enable = 0;
envelope_speed = 0;
wave_setup = 0;
master_volume = 0;
Array.Clear(main_wavetable, 0, main_wavetable.Length);
main_enable = 0;
main_frequency = 0;
main_addr = 0;
Array.Clear(lfo_wavetable, 0, lfo_wavetable.Length);
lfo_enable = 0;
lfo_frequency = 0;
lfo_addr = 0;
lfo_phaseacc = 0.0;
sweep_bias = 0;
now_volume = 0;
now_freq = 0;
output = 0;
}
public uint GetSize()
{
return 512;
}
public void SaveState(StateBuffer buffer)
{
buffer.Write(reg);
buffer.Write(volenv_mode);
buffer.Write(volenv_gain);
buffer.Write(volenv_decay);
buffer.Write(volenv_phaseacc);
buffer.Write(swpenv_mode);
buffer.Write(swpenv_gain);
buffer.Write(swpenv_decay);
buffer.Write(swpenv_phaseacc);
buffer.Write(envelope_enable);
buffer.Write(envelope_speed);
buffer.Write(wave_setup);
buffer.Write(master_volume);
buffer.Write(main_wavetable);
buffer.Write(main_enable);
buffer.Write(main_frequency);
buffer.Write(main_addr);
buffer.Write(lfo_wavetable);
buffer.Write(lfo_enable);
buffer.Write(lfo_frequency);
buffer.Write(lfo_addr);
buffer.Write(lfo_phaseacc);
buffer.Write(sweep_bias);
buffer.Write(now_volume);
buffer.Write(now_freq);
buffer.Write(output);
}
}
}
}