AxibugEmuOnline_old/AxibugEmuOnline.Client.PSVita/Assets/com.unity.postprocessing@2.3.0/PostProcessing/Runtime/Utils/HableCurve.cs

395 lines
14 KiB
C#

namespace UnityEngine.Rendering.PostProcessing
{
/// <summary>
/// A raw implementation of John Hable's artist-friendly tonemapping curve.
/// See http://filmicworlds.com/blog/filmic-tonemapping-with-piecewise-power-curves/
/// </summary>
public class HableCurve
{
class Segment
{
public float offsetX;
public float offsetY;
public float scaleX;
public float scaleY;
public float lnA;
public float B;
public float Eval(float x)
{
float x0 = (x - offsetX) * scaleX;
float y0 = 0f;
// log(0) is undefined but our function should evaluate to 0. There are better ways to handle this,
// but it's doing it the slow way here for clarity.
if (x0 > 0)
y0 = Mathf.Exp(lnA + B * Mathf.Log(x0));
return y0 * scaleY + offsetY;
}
}
struct DirectParams
{
internal float x0;
internal float y0;
internal float x1;
internal float y1;
internal float W;
internal float overshootX;
internal float overshootY;
internal float gamma;
}
/// <summary>
/// The curve's white point.
/// </summary>
public float whitePoint { get; private set; }
/// <summary>
/// The inverse of the curve's white point.
/// </summary>
public float inverseWhitePoint { get; private set; }
internal float x0 { get; private set; }
internal float x1 { get; private set; }
// Toe, mid, shoulder
readonly Segment[] m_Segments = new Segment[3];
/// <summary>
/// Creates a new curve.
/// </summary>
public HableCurve()
{
for (int i = 0; i < 3; i++)
m_Segments[i] = new Segment();
uniforms = new Uniforms(this);
}
/// <summary>
/// Evaluates a given point on the curve.
/// </summary>
/// <param name="x">The point within the curve to evaluate (on the horizontal axis)</param>
/// <returns>The value of the curve, at the point specified</returns>
public float Eval(float x)
{
float normX = x * inverseWhitePoint;
int index = (normX < x0) ? 0 : ((normX < x1) ? 1 : 2);
var segment = m_Segments[index];
float ret = segment.Eval(normX);
return ret;
}
/// <summary>
/// Initializes the curve with given settings.
/// </summary>
/// <param name="toeStrength">Affects the transition between the toe and the mid section of
/// the curve. A value of 0 means no toe, a value of 1 means a very hard transition</param>
/// <param name="toeLength">Affects how much of the dynamic range is in the toe. With a
/// small value, the toe will be very short and quickly transition into the linear section,
/// and with a longer value having a longer toe</param>
/// <param name="shoulderStrength">Affects the transition between the mid section and the
/// shoulder of the curve. A value of 0 means no shoulder, a value of 1 means a very hard
/// transition</param>
/// <param name="shoulderLength">Affects how many F-stops (EV) to add to the dynamic range
/// of the curve</param>
/// <param name="shoulderAngle">Affects how much overshoot to add to the shoulder</param>
/// <param name="gamma">Applies a gamma function to the curve</param>
public void Init(float toeStrength, float toeLength, float shoulderStrength, float shoulderLength, float shoulderAngle, float gamma)
{
var dstParams = new DirectParams();
// This is not actually the display gamma. It's just a UI space to avoid having to
// enter small numbers for the input.
const float kPerceptualGamma = 2.2f;
// Constraints
{
toeLength = Mathf.Pow(Mathf.Clamp01(toeLength), kPerceptualGamma);
toeStrength = Mathf.Clamp01(toeStrength);
shoulderAngle = Mathf.Clamp01(shoulderAngle);
shoulderStrength = Mathf.Clamp(shoulderStrength, 1e-5f, 1f - 1e-5f);
shoulderLength = Mathf.Max(0f, shoulderLength);
gamma = Mathf.Max(1e-5f, gamma);
}
// Apply base params
{
// Toe goes from 0 to 0.5
float x0 = toeLength * 0.5f;
float y0 = (1f - toeStrength) * x0; // Lerp from 0 to x0
float remainingY = 1f - y0;
float initialW = x0 + remainingY;
float y1_offset = (1f - shoulderStrength) * remainingY;
float x1 = x0 + y1_offset;
float y1 = y0 + y1_offset;
// Filmic shoulder strength is in F stops
float extraW = RuntimeUtilities.Exp2(shoulderLength) - 1f;
float W = initialW + extraW;
dstParams.x0 = x0;
dstParams.y0 = y0;
dstParams.x1 = x1;
dstParams.y1 = y1;
dstParams.W = W;
// Bake the linear to gamma space conversion
dstParams.gamma = gamma;
}
dstParams.overshootX = (dstParams.W * 2f) * shoulderAngle * shoulderLength;
dstParams.overshootY = 0.5f * shoulderAngle * shoulderLength;
InitSegments(dstParams);
}
void InitSegments(DirectParams srcParams)
{
var paramsCopy = srcParams;
whitePoint = srcParams.W;
inverseWhitePoint = 1f / srcParams.W;
// normalize params to 1.0 range
paramsCopy.W = 1f;
paramsCopy.x0 /= srcParams.W;
paramsCopy.x1 /= srcParams.W;
paramsCopy.overshootX = srcParams.overshootX / srcParams.W;
float toeM = 0f;
float shoulderM = 0f;
{
float m, b;
AsSlopeIntercept(out m, out b, paramsCopy.x0, paramsCopy.x1, paramsCopy.y0, paramsCopy.y1);
float g = srcParams.gamma;
// Base function of linear section plus gamma is
// y = (mx+b)^g
//
// which we can rewrite as
// y = exp(g*ln(m) + g*ln(x+b/m))
//
// and our evaluation function is (skipping the if parts):
/*
float x0 = (x - offsetX) * scaleX;
y0 = exp(m_lnA + m_B*log(x0));
return y0*scaleY + m_offsetY;
*/
var midSegment = m_Segments[1];
midSegment.offsetX = -(b / m);
midSegment.offsetY = 0f;
midSegment.scaleX = 1f;
midSegment.scaleY = 1f;
midSegment.lnA = g * Mathf.Log(m);
midSegment.B = g;
toeM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x0);
shoulderM = EvalDerivativeLinearGamma(m, b, g, paramsCopy.x1);
// apply gamma to endpoints
paramsCopy.y0 = Mathf.Max(1e-5f, Mathf.Pow(paramsCopy.y0, paramsCopy.gamma));
paramsCopy.y1 = Mathf.Max(1e-5f, Mathf.Pow(paramsCopy.y1, paramsCopy.gamma));
paramsCopy.overshootY = Mathf.Pow(1f + paramsCopy.overshootY, paramsCopy.gamma) - 1f;
}
this.x0 = paramsCopy.x0;
this.x1 = paramsCopy.x1;
// Toe section
{
var toeSegment = m_Segments[0];
toeSegment.offsetX = 0;
toeSegment.offsetY = 0f;
toeSegment.scaleX = 1f;
toeSegment.scaleY = 1f;
float lnA, B;
SolveAB(out lnA, out B, paramsCopy.x0, paramsCopy.y0, toeM);
toeSegment.lnA = lnA;
toeSegment.B = B;
}
// Shoulder section
{
// Use the simple version that is usually too flat
var shoulderSegment = m_Segments[2];
float x0 = (1f + paramsCopy.overshootX) - paramsCopy.x1;
float y0 = (1f + paramsCopy.overshootY) - paramsCopy.y1;
float lnA, B;
SolveAB(out lnA, out B, x0, y0, shoulderM);
shoulderSegment.offsetX = (1f + paramsCopy.overshootX);
shoulderSegment.offsetY = (1f + paramsCopy.overshootY);
shoulderSegment.scaleX = -1f;
shoulderSegment.scaleY = -1f;
shoulderSegment.lnA = lnA;
shoulderSegment.B = B;
}
// Normalize so that we hit 1.0 at our white point. We wouldn't have do this if we
// skipped the overshoot part.
{
// Evaluate shoulder at the end of the curve
float scale = m_Segments[2].Eval(1f);
float invScale = 1f / scale;
m_Segments[0].offsetY *= invScale;
m_Segments[0].scaleY *= invScale;
m_Segments[1].offsetY *= invScale;
m_Segments[1].scaleY *= invScale;
m_Segments[2].offsetY *= invScale;
m_Segments[2].scaleY *= invScale;
}
}
// Find a function of the form:
// f(x) = e^(lnA + Bln(x))
// where
// f(0) = 0; not really a constraint
// f(x0) = y0
// f'(x0) = m
void SolveAB(out float lnA, out float B, float x0, float y0, float m)
{
B = (m * x0) / y0;
lnA = Mathf.Log(y0) - B * Mathf.Log(x0);
}
// Convert to y=mx+b
void AsSlopeIntercept(out float m, out float b, float x0, float x1, float y0, float y1)
{
float dy = (y1 - y0);
float dx = (x1 - x0);
if (dx == 0)
m = 1f;
else
m = dy / dx;
b = y0 - x0 * m;
}
// f(x) = (mx+b)^g
// f'(x) = gm(mx+b)^(g-1)
float EvalDerivativeLinearGamma(float m, float b, float g, float x)
{
float ret = g * m * Mathf.Pow(m * x + b, g - 1f);
return ret;
}
/// <summary>
/// Utility class to retrieve curve values for shader evaluation.
/// </summary>
public class Uniforms
{
HableCurve parent;
internal Uniforms(HableCurve parent)
{
this.parent = parent;
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(inverseWhitePoint, x0, x1, 0)</c>.
/// </summary>
public Vector4 curve
{
get { return new Vector4(parent.inverseWhitePoint, parent.x0, parent.x1, 0f); }
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(toe.offsetX, toe.offsetY, toe.scaleX, toe.scaleY)</c>.
/// </summary>
public Vector4 toeSegmentA
{
get
{
var toe = parent.m_Segments[0];
return new Vector4(toe.offsetX, toe.offsetY, toe.scaleX, toe.scaleY);
}
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(toe.lnA, toe.B, 0, 0)</c>.
/// </summary>
public Vector4 toeSegmentB
{
get
{
var toe = parent.m_Segments[0];
return new Vector4(toe.lnA, toe.B, 0f, 0f);
}
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(mid.offsetX, mid.offsetY, mid.scaleX, mid.scaleY)</c>.
/// </summary>
public Vector4 midSegmentA
{
get
{
var mid = parent.m_Segments[1];
return new Vector4(mid.offsetX, mid.offsetY, mid.scaleX, mid.scaleY);
}
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(mid.lnA, mid.B, 0, 0)</c>.
/// </summary>
public Vector4 midSegmentB
{
get
{
var mid = parent.m_Segments[1];
return new Vector4(mid.lnA, mid.B, 0f, 0f);
}
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(toe.offsetX, toe.offsetY, toe.scaleX, toe.scaleY)</c>.
/// </summary>
public Vector4 shoSegmentA
{
get
{
var sho = parent.m_Segments[2];
return new Vector4(sho.offsetX, sho.offsetY, sho.scaleX, sho.scaleY);
}
}
/// <summary>
/// A pre-built <see cref="Vector4"/> holding: <c>(sho.lnA, sho.B, 0, 0)</c>.
/// </summary>
public Vector4 shoSegmentB
{
get
{
var sho = parent.m_Segments[2];
return new Vector4(sho.lnA, sho.B, 0f, 0f);
}
}
}
/// <summary>
/// The builtin <see cref="Uniforms"/> instance for this curve.
/// </summary>
public readonly Uniforms uniforms;
}
}