AxibugEmuOnline_old/virtuanessrc097-master/NES/ApuEX/emu2413/emu2413.c

1546 lines
38 KiB
C

/***********************************************************************************
emu2413.c -- YM2413 emulator written by Mitsutaka Okazaki 2001
2001 01-08 : Version 0.10 -- 1st version.
2001 01-15 : Version 0.20 -- semi-public version.
2001 01-16 : Version 0.30 -- 1st public version.
2001 01-17 : Version 0.31 -- Fixed bassdrum problem.
: Version 0.32 -- LPF implemented.
2001 01-18 : Version 0.33 -- Fixed the drum problem, refine the mix-down method.
-- Fixed the LFO bug.
2001 01-24 : Version 0.35 -- Fixed the drum problem,
support undocumented EG behavior.
2001 02-02 : Version 0.38 -- Improved the performance.
Fixed the hi-hat and cymbal model.
Fixed the default percussive datas.
Noise reduction.
Fixed the feedback problem.
2001 03-03 : Version 0.39 -- Fixed some drum bugs.
Improved the performance.
2001 03-04 : Version 0.40 -- Improved the feedback.
Change the default table size.
Clock and Rate can be changed during play.
2001 06-24 : Version 0.50 -- Improved the hi-hat and the cymbal tone.
Added VRC7 patch (OPLL_reset_patch is changed).
Fix OPLL_reset() bug.
Added OPLL_setMask, OPLL_getMask and OPLL_toggleMask.
Added OPLL_writeIO.
References:
fmopl.c -- 1999,2000 written by Tatsuyuki Satoh (MAME development).
s_opl.c -- 2001 written by mamiya (NEZplug development).
fmgen.cpp -- 1999,2000 written by cisc.
fmpac.ill -- 2000 created by NARUTO.
MSX-Datapack
YMU757 data sheet
YM2143 data sheet
**************************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "emu2413.h"
#if defined(_MSC_VER)
#define INLINE __inline
#elif defined(__GNUC__)
#define INLINE __inline__
#else
#define INLINE
#endif
#define OPLL_TONE_NUM 2
static unsigned char default_inst[OPLL_TONE_NUM][(16+3)*16]=
{
{
#include "2413tone.h"
},
{
#include "vrc7tone.h"
}
};
/* Size of Sintable ( 1 -- 18 can be used, but 7 -- 14 recommended.)*/
#define PG_BITS 9
#define PG_WIDTH (1<<PG_BITS)
/* Phase increment counter */
#define DP_BITS 18
#define DP_WIDTH (1<<DP_BITS)
#define DP_BASE_BITS (DP_BITS - PG_BITS)
/* Dynamic range */
#define DB_STEP 0.375
#define DB_BITS 7
#define DB_MUTE (1<<DB_BITS)
/* Dynamic range of envelope */
#define EG_STEP 0.375
#define EG_BITS 7
#define EG_MUTE (1<<EB_BITS)
/* Dynamic range of total level */
#define TL_STEP 0.75
#define TL_BITS 6
#define TL_MUTE (1<<TL_BITS)
/* Dynamic range of sustine level */
#define SL_STEP 3.0
#define SL_BITS 4
#define SL_MUTE (1<<SL_BITS)
#define EG2DB(d) ((d)*(int)(EG_STEP/DB_STEP))
#define TL2EG(d) ((d)*(int)(TL_STEP/EG_STEP))
#define SL2EG(d) ((d)*(int)(SL_STEP/EG_STEP))
/* Volume of Noise (dB) */
#define DB_NOISE (24.0)
#define DB_POS(x) (uint32)((x)/DB_STEP)
#define DB_NEG(x) (uint32)(DB_MUTE+DB_MUTE+(x)/DB_STEP)
/* Bits for liner value */
#define DB2LIN_AMP_BITS 10
#define SLOT_AMP_BITS (DB2LIN_AMP_BITS)
/* Bits for envelope phase incremental counter */
#define EG_DP_BITS 22
#define EG_DP_WIDTH (1<<EG_DP_BITS)
/* Bits for Pitch and Amp modulator */
#define PM_PG_BITS 8
#define PM_PG_WIDTH (1<<PM_PG_BITS)
#define PM_DP_BITS 16
#define PM_DP_WIDTH (1<<PM_DP_BITS)
#define AM_PG_BITS 8
#define AM_PG_WIDTH (1<<AM_PG_BITS)
#define AM_DP_BITS 16
#define AM_DP_WIDTH (1<<AM_DP_BITS)
/* PM table is calcurated by PM_AMP * pow(2,PM_DEPTH*sin(x)/1200) */
#define PM_AMP_BITS 8
#define PM_AMP (1<<PM_AMP_BITS)
/* PM speed(Hz) and depth(cent) */
#define PM_SPEED 6.4
#define PM_DEPTH 13.75
/* AM speed(Hz) and depth(dB) */
#define AM_SPEED 3.7
#define AM_DEPTH 4.8
/* Cut the lower b bit(s) off. */
#define HIGHBITS(c,b) ((c)>>(b))
/* Leave the lower b bit(s). */
#define LOWBITS(c,b) ((c)&((1<<(b))-1))
/* Expand x which is s bits to d bits. */
#define EXPAND_BITS(x,s,d) ((x)<<((d)-(s)))
/* Expand x which is s bits to d bits and fill expanded bits '1' */
#define EXPAND_BITS_X(x,s,d) (((x)<<((d)-(s)))|((1<<((d)-(s)))-1))
/* Adjust envelope speed which depends on sampling rate. */
#define rate_adjust(x) (uint32)((double)(x)*clk/72/rate + 0.5) /* +0.5 to round */
#define MOD(x) ch[x]->mod
#define CAR(x) ch[x]->car
/* Sampling rate */
static uint32 rate ;
/* Input clock */
static uint32 clk ;
/* WaveTable for each envelope amp */
static uint32 fullsintable[PG_WIDTH] ;
static uint32 halfsintable[PG_WIDTH] ;
static uint32 snaretable[PG_WIDTH] ;
static int32 noiseAtable[64] = {
-1,1,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,
-1,1,0,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0,-1,1,0,0
} ;
static int32 noiseBtable[8] = {
-1,1,-1,1,0,0,0,0
} ;
static uint32 *waveform[5] = {fullsintable,halfsintable,snaretable} ;
/* LFO Table */
static int32 pmtable[PM_PG_WIDTH] ;
static int32 amtable[AM_PG_WIDTH] ;
/* Noise and LFO */
static uint32 pm_dphase ;
static uint32 am_dphase ;
/* dB to Liner table */
static int32 DB2LIN_TABLE[(DB_MUTE + DB_MUTE)*2] ;
/* Liner to Log curve conversion table (for Attack rate). */
static uint32 AR_ADJUST_TABLE[1<<EG_BITS] ;
/* Empty voice data */
static OPLL_PATCH null_patch = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } ;
/* Basic voice Data */
static OPLL_PATCH default_patch[OPLL_TONE_NUM][(16+3)*2] ;
/* Definition of envelope mode */
enum { SETTLE,ATTACK,DECAY,SUSHOLD,SUSTINE,RELEASE,FINISH } ;
/* Phase incr table for Attack */
static uint32 dphaseARTable[16][16] ;
/* Phase incr table for Decay and Release */
static uint32 dphaseDRTable[16][16] ;
/* KSL + TL Table */
static uint32 tllTable[16][8][1<<TL_BITS][4] ;
static int32 rksTable[2][8][2] ;
/* Phase incr table for PG */
static uint32 dphaseTable[512][8][16] ;
/***************************************************
Create tables
****************************************************/
INLINE static int32 Min(int32 i,int32 j)
{
if(i<j) return i ; else return j ;
}
/* Table for AR to LogCurve. */
static void makeAdjustTable(void)
{
int i ;
AR_ADJUST_TABLE[0] = (1<<EG_BITS) ;
for ( i=1 ; i < 128 ; i++)
AR_ADJUST_TABLE[i] = (uint32)((double)(1<<EG_BITS) - 1 - (1<<EG_BITS) * log(i) / log(128)) ;
}
/* Table for dB(0 -- (1<<DB_BITS)) to Liner(0 -- DB2LIN_AMP_WIDTH) */
static void makeDB2LinTable(void)
{
int i ;
for( i=0 ; i < DB_MUTE + DB_MUTE ; i++)
{
DB2LIN_TABLE[i] = (int32)((double)((1<<DB2LIN_AMP_BITS)-1) * pow(10,-(double)i*DB_STEP/20)) ;
if(i>=DB_MUTE) DB2LIN_TABLE[i] = 0 ;
DB2LIN_TABLE[i+ DB_MUTE + DB_MUTE] = -DB2LIN_TABLE[i] ;
}
}
/* Liner(+0.0 - +1.0) to dB((1<<DB_BITS) - 1 -- 0) */
static int32 lin2db(double d)
{
if(d == 0) return (DB_MUTE - 1) ;
else return Min(-(int32)(20.0*log10(d)/DB_STEP), DB_MUTE - 1) ; /* 0 -- 128 */
}
/* Sin Table */
static void makeSinTable(void)
{
int i ;
for( i = 0 ; i < PG_WIDTH/4 ; i++ ){
fullsintable[i] = lin2db(sin(2.0*PI*i/PG_WIDTH)) ;
snaretable[i] = (int32)((6.0)/DB_STEP) ;
}
for( i = 0 ; i < PG_WIDTH/4 ; i++ ){
fullsintable[PG_WIDTH/2 - 1 - i] = fullsintable[i] ;
snaretable[PG_WIDTH/2 - 1 - i] = snaretable[i] ;
}
for( i = 0 ; i < PG_WIDTH/2 ; i++ ){
fullsintable[PG_WIDTH/2+i] = DB_MUTE + DB_MUTE + fullsintable[i] ;
snaretable[PG_WIDTH/2+i] = DB_MUTE + DB_MUTE + snaretable[i] ;
}
for( i = 0 ; i < PG_WIDTH/2 ; i++ ) halfsintable[i] = fullsintable[i] ;
for( i = PG_WIDTH/2 ; i< PG_WIDTH ; i++ ) halfsintable[i] = fullsintable[0] ;
for( i = 0 ; i < 64 ; i++ )
{
if(noiseAtable[i]>0) noiseAtable[i] = DB_POS(0) ;
else if(noiseAtable[i]<0) noiseAtable[i] = DB_NEG(0) ;
else noiseAtable[i] = DB_MUTE - 1 ;
}
for( i = 0 ; i < 8 ; i++ )
{
if(noiseBtable[i]>0) noiseBtable[i] = DB_POS(0) ;
else if(noiseBtable[i]<0) noiseBtable[i] = DB_NEG(0) ;
else noiseBtable[i] = DB_MUTE - 1 ;
}
}
/* Table for Pitch Modulator */
static void makePmTable(void)
{
int i ;
for(i = 0 ; i < PM_PG_WIDTH ; i++ )
pmtable[i] = (int32)((double)PM_AMP * pow(2,(double)PM_DEPTH*sin(2.0*PI*i/PM_PG_WIDTH)/1200)) ;
}
/* Table for Amp Modulator */
static void makeAmTable(void)
{
int i ;
for(i = 0 ; i < AM_PG_WIDTH ; i++ )
amtable[i] = (int32)((double)AM_DEPTH/2/DB_STEP * (1.0 + sin(2.0*PI*i/PM_PG_WIDTH))) ;
}
/* Phase increment counter table */
static void makeDphaseTable(void)
{
uint32 fnum, block , ML ;
uint32 mltable[16]={ 1,1*2,2*2,3*2,4*2,5*2,6*2,7*2,8*2,9*2,10*2,10*2,12*2,12*2,15*2,15*2 } ;
for(fnum=0; fnum<512; fnum++)
for(block=0; block<8; block++)
for(ML=0; ML<16; ML++)
dphaseTable[fnum][block][ML] = rate_adjust(((fnum * mltable[ML])<<block)>>(20-DP_BITS)) ;
}
static void makeTllTable(void)
{
#define dB2(x) (uint32)((x)*2)
static uint32 kltable[16] = {
dB2( 0.000),dB2( 9.000),dB2(12.000),dB2(13.875),dB2(15.000),dB2(16.125),dB2(16.875),dB2(17.625),
dB2(18.000),dB2(18.750),dB2(19.125),dB2(19.500),dB2(19.875),dB2(20.250),dB2(20.625),dB2(21.000)
} ;
int32 tmp ;
int fnum, block ,TL , KL ;
for(fnum=0; fnum<16; fnum++)
for(block=0; block<8; block++)
for(TL=0; TL<64; TL++)
for(KL=0; KL<4; KL++)
{
if(KL==0)
{
tllTable[fnum][block][TL][KL] = TL2EG(TL) ;
}
else
{
tmp = kltable[fnum] - dB2(3.000) * (7 - block) ;
if(tmp <= 0)
tllTable[fnum][block][TL][KL] = TL2EG(TL) ;
else
tllTable[fnum][block][TL][KL] = (uint32)((tmp>>(3-KL))/EG_STEP) + TL2EG(TL) ;
}
}
}
/* Rate Table for Attack */
static void makeDphaseARTable(void)
{
int AR,Rks,RM,RL ;
for(AR=0; AR<16; AR++)
for(Rks=0; Rks<16; Rks++)
{
RM = AR + (Rks>>2) ;
if(RM>15) RM = 15 ;
RL = Rks&3 ;
switch(AR)
{
case 0:
dphaseARTable[AR][Rks] = 0 ;
break ;
case 15:
dphaseARTable[AR][Rks] = EG_DP_WIDTH ;
break ;
default:
dphaseARTable[AR][Rks] = rate_adjust(( 3 * (RL + 4) << (RM + 1))) ;
break ;
}
}
}
/* Rate Table for Decay */
static void makeDphaseDRTable(void)
{
int DR,Rks,RM,RL ;
for(DR=0; DR<16; DR++)
for(Rks=0; Rks<16; Rks++)
{
RM = DR + (Rks>>2) ;
RL = Rks&3 ;
if(RM>15) RM = 15 ;
switch(DR)
{
case 0:
dphaseDRTable[DR][Rks] = 0 ;
break ;
default:
dphaseDRTable[DR][Rks] = rate_adjust((RL + 4) << (RM - 1));
break ;
}
}
}
static void makeRksTable(void)
{
int fnum8, block, KR ;
for(fnum8 = 0 ; fnum8 < 2 ; fnum8++)
for(block = 0 ; block < 8 ; block++)
for(KR = 0; KR < 2 ; KR++)
{
if(KR!=0)
rksTable[fnum8][block][KR] = ( block << 1 ) + fnum8 ;
else
rksTable[fnum8][block][KR] = block >> 1 ;
}
}
void dump2patch(unsigned char *dump, OPLL_PATCH *patch)
{
patch[0].AM = (dump[0]>>7)&1 ;
patch[1].AM = (dump[1]>>7)&1 ;
patch[0].PM = (dump[0]>>6)&1 ;
patch[1].PM = (dump[1]>>6)&1 ;
patch[0].EG = (dump[0]>>5)&1 ;
patch[1].EG = (dump[1]>>5)&1 ;
patch[0].KR = (dump[0]>>4)&1 ;
patch[1].KR = (dump[1]>>4)&1 ;
patch[0].ML = (dump[0])&15 ;
patch[1].ML = (dump[1])&15 ;
patch[0].KL = (dump[2]>>6)&3 ;
patch[1].KL = (dump[3]>>6)&3 ;
patch[0].TL = (dump[2])&63 ;
patch[0].FB = (dump[3])&7 ;
patch[0].WF = (dump[3]>>3)&1 ;
patch[1].WF = (dump[3]>>4)&1 ;
patch[0].AR = (dump[4]>>4)&15 ;
patch[1].AR = (dump[5]>>4)&15 ;
patch[0].DR = (dump[4])&15 ;
patch[1].DR = (dump[5])&15 ;
patch[0].SL = (dump[6]>>4)&15 ;
patch[1].SL = (dump[7]>>4)&15 ;
patch[0].RR = (dump[6])&15 ;
patch[1].RR = (dump[7])&15 ;
}
static void makeDefaultPatch()
{
int i, j ;
for(i=0;i<OPLL_TONE_NUM;i++)
for(j=0;j<19;j++)
dump2patch(default_inst[i]+j*16,&default_patch[i][j*2]) ;
}
/************************************************************
Calc Parameters
************************************************************/
INLINE static uint32 calc_eg_dphase(OPLL_SLOT *slot)
{
switch(slot->eg_mode)
{
case ATTACK:
return dphaseARTable[slot->patch->AR][slot->rks] ;
case DECAY:
return dphaseDRTable[slot->patch->DR][slot->rks] ;
case SUSHOLD:
return 0 ;
case SUSTINE:
return dphaseDRTable[slot->patch->RR][slot->rks] ;
case RELEASE:
if(slot->sustine)
return dphaseDRTable[5][slot->rks] ;
else if(slot->patch->EG)
return dphaseDRTable[slot->patch->RR][slot->rks] ;
else
return dphaseDRTable[7][slot->rks] ;
case FINISH:
return 0 ;
default:
return 0 ;
}
}
/*************************************************************
OPLL internal interfaces
*************************************************************/
#define SLOT_BD1 12
#define SLOT_BD2 13
#define SLOT_HH 14
#define SLOT_SD 15
#define SLOT_TOM 16
#define SLOT_CYM 17
#define UPDATE_PG(S) (S)->dphase = dphaseTable[(S)->fnum][(S)->block][(S)->patch->ML]
#define UPDATE_TLL(S)\
(((S)->type==0)?\
((S)->tll = tllTable[((S)->fnum)>>5][(S)->block][(S)->patch->TL][(S)->patch->KL]):\
((S)->tll = tllTable[((S)->fnum)>>5][(S)->block][(S)->volume][(S)->patch->KL]))
#define UPDATE_RKS(S) (S)->rks = rksTable[((S)->fnum)>>8][(S)->block][(S)->patch->KR]
#define UPDATE_WF(S) (S)->sintbl = waveform[(S)->patch->WF]
#define UPDATE_EG(S) (S)->eg_dphase = calc_eg_dphase(S)
#define UPDATE_ALL(S)\
UPDATE_PG(S);\
UPDATE_TLL(S);\
UPDATE_RKS(S);\
UPDATE_WF(S); \
UPDATE_EG(S) /* EG should be last */
/* Force Refresh (When external program changes some parameters). */
void OPLL_forceRefresh(OPLL *opll)
{
int i ;
if(opll==NULL) return ;
for(i=0; i<18 ;i++)
{
UPDATE_PG(opll->slot[i]) ;
UPDATE_RKS(opll->slot[i]) ;
UPDATE_TLL(opll->slot[i]) ;
UPDATE_WF(opll->slot[i]) ;
UPDATE_EG(opll->slot[i]) ;
}
}
/* Slot key on */
INLINE static void slotOn(OPLL_SLOT *slot)
{
slot->eg_mode = ATTACK ;
slot->phase = 0 ;
slot->eg_phase = 0 ;
}
/* Slot key off */
INLINE static void slotOff(OPLL_SLOT *slot)
{
if(slot->eg_mode == ATTACK)
slot->eg_phase = EXPAND_BITS(AR_ADJUST_TABLE[HIGHBITS(slot->eg_phase,EG_DP_BITS-EG_BITS)],EG_BITS,EG_DP_BITS) ;
slot->eg_mode = RELEASE ;
}
/* Channel key on */
INLINE static void keyOn(OPLL *opll, int i)
{
if(!opll->slot_on_flag[i*2]) slotOn(opll->MOD(i)) ;
if(!opll->slot_on_flag[i*2+1]) slotOn(opll->CAR(i)) ;
opll->ch[i]->key_status = 1 ;
}
/* Channel key off */
INLINE static void keyOff(OPLL *opll, int i)
{
if(opll->slot_on_flag[i*2+1]) slotOff(opll->CAR(i)) ;
opll->ch[i]->key_status = 0 ;
}
INLINE static void keyOn_BD(OPLL *opll){ keyOn(opll,6) ; }
INLINE static void keyOn_SD(OPLL *opll){ if(!opll->slot_on_flag[SLOT_SD]) slotOn(opll->CAR(7)) ; }
INLINE static void keyOn_TOM(OPLL *opll){ if(!opll->slot_on_flag[SLOT_TOM]) slotOn(opll->MOD(8)) ; }
INLINE static void keyOn_HH(OPLL *opll){ if(!opll->slot_on_flag[SLOT_HH]) slotOn(opll->MOD(7)) ; }
INLINE static void keyOn_CYM(OPLL *opll){ if(!opll->slot_on_flag[SLOT_CYM]) slotOn(opll->CAR(8)) ; }
/* Drum key off */
INLINE static void keyOff_BD(OPLL *opll){ keyOff(opll,6) ; }
INLINE static void keyOff_SD(OPLL *opll){ if(opll->slot_on_flag[SLOT_SD]) slotOff(opll->CAR(7)) ; }
INLINE static void keyOff_TOM(OPLL *opll){ if(opll->slot_on_flag[SLOT_TOM]) slotOff(opll->MOD(8)) ; }
INLINE static void keyOff_HH(OPLL *opll){ if(opll->slot_on_flag[SLOT_HH]) slotOff(opll->MOD(7)) ; }
INLINE static void keyOff_CYM(OPLL *opll){ if(opll->slot_on_flag[SLOT_CYM]) slotOff(opll->CAR(8)) ; }
/* Change a voice */
INLINE static void setPatch(OPLL *opll, int i, int num)
{
opll->ch[i]->patch_number = num ;
opll->MOD(i)->patch = opll->patch[num*2+0] ;
opll->CAR(i)->patch = opll->patch[num*2+1] ;
}
/* Change a rythm voice */
INLINE static void setSlotPatch(OPLL_SLOT *slot, OPLL_PATCH *patch)
{
slot->patch = patch ;
}
/* Set sustine parameter */
INLINE static void setSustine(OPLL *opll, int c, int sustine)
{
opll->CAR(c)->sustine = sustine ;
if(opll->MOD(c)->type) opll->MOD(c)->sustine = sustine ;
}
/* Volume : 6bit ( Volume register << 2 ) */
INLINE static void setVolume(OPLL *opll, int c, int volume)
{
opll->CAR(c)->volume = volume ;
}
INLINE static void setSlotVolume(OPLL_SLOT *slot, int volume)
{
slot->volume = volume ;
}
/* Set F-Number ( fnum : 9bit ) */
INLINE static void setFnumber(OPLL *opll, int c, int fnum)
{
opll->CAR(c)->fnum = fnum ;
opll->MOD(c)->fnum = fnum ;
}
/* Set Block data (block : 3bit ) */
INLINE static void setBlock(OPLL *opll, int c, int block)
{
opll->CAR(c)->block = block ;
opll->MOD(c)->block = block ;
}
/* Change Rythm Mode */
INLINE static void setRythmMode(OPLL *opll, int mode)
{
opll->rythm_mode = mode ;
if(mode)
{
opll->ch[6]->patch_number = 16 ;
opll->ch[7]->patch_number = 17 ;
opll->ch[8]->patch_number = 18 ;
setSlotPatch(opll->slot[SLOT_BD1], opll->patch[16*2+0]) ;
setSlotPatch(opll->slot[SLOT_BD2], opll->patch[16*2+1]) ;
setSlotPatch(opll->slot[SLOT_HH], opll->patch[17*2+0]) ;
setSlotPatch(opll->slot[SLOT_SD], opll->patch[17*2+1]) ;
opll->slot[SLOT_HH]->type = 1 ;
setSlotPatch(opll->slot[SLOT_TOM], opll->patch[18*2+0]) ;
setSlotPatch(opll->slot[SLOT_CYM], opll->patch[18*2+1]) ;
opll->slot[SLOT_TOM]->type = 1 ;
}
else
{
setPatch(opll, 6, opll->reg[0x36]>>4) ;
setPatch(opll, 7, opll->reg[0x37]>>4) ;
opll->slot[SLOT_HH]->type = 0 ;
setPatch(opll, 8, opll->reg[0x38]>>4) ;
opll->slot[SLOT_TOM]->type = 0 ;
}
if(!opll->slot_on_flag[SLOT_BD1])
opll->slot[SLOT_BD1]->eg_mode = FINISH ;
if(!opll->slot_on_flag[SLOT_BD2])
opll->slot[SLOT_BD2]->eg_mode = FINISH ;
if(!opll->slot_on_flag[SLOT_HH])
opll->slot[SLOT_HH]->eg_mode = FINISH ;
if(!opll->slot_on_flag[SLOT_SD])
opll->slot[SLOT_SD]->eg_mode = FINISH ;
if(!opll->slot_on_flag[SLOT_TOM])
opll->slot[SLOT_TOM]->eg_mode = FINISH ;
if(!opll->slot_on_flag[SLOT_CYM])
opll->slot[SLOT_CYM]->eg_mode = FINISH ;
}
void OPLL_copyPatch(OPLL *opll, int num, OPLL_PATCH *patch)
{
memcpy(opll->patch[num],patch,sizeof(OPLL_PATCH)) ;
}
/***********************************************************
Initializing
***********************************************************/
static void OPLL_SLOT_reset(OPLL_SLOT *slot)
{
slot->sintbl = waveform[0] ;
slot->phase = 0 ;
slot->dphase = 0 ;
slot->output[0] = 0 ;
slot->output[1] = 0 ;
slot->feedback = 0 ;
slot->eg_mode = SETTLE ;
slot->eg_phase = EG_DP_WIDTH ;
slot->eg_dphase = 0 ;
slot->rks = 0 ;
slot->tll = 0 ;
slot->sustine = 0 ;
slot->fnum = 0 ;
slot->block = 0 ;
slot->volume = 0 ;
slot->pgout = 0 ;
slot->egout = 0 ;
slot->patch = &null_patch ;
}
static OPLL_SLOT *OPLL_SLOT_new(void)
{
OPLL_SLOT *slot ;
slot = malloc(sizeof(OPLL_SLOT)) ;
if(slot == NULL) return NULL ;
return slot ;
}
static void OPLL_SLOT_delete(OPLL_SLOT *slot)
{
free(slot) ;
}
static void OPLL_CH_reset(OPLL_CH *ch)
{
if(ch->mod!=NULL) OPLL_SLOT_reset(ch->mod) ;
if(ch->car!=NULL) OPLL_SLOT_reset(ch->car) ;
ch->key_status = 0 ;
}
static OPLL_CH *OPLL_CH_new(void)
{
OPLL_CH *ch ;
OPLL_SLOT *mod, *car ;
mod = OPLL_SLOT_new() ;
if(mod == NULL) return NULL ;
car = OPLL_SLOT_new() ;
if(car == NULL)
{
OPLL_SLOT_delete(mod) ;
return NULL ;
}
ch = malloc(sizeof(OPLL_CH)) ;
if(ch == NULL)
{
OPLL_SLOT_delete(mod) ;
OPLL_SLOT_delete(car) ;
return NULL ;
}
mod->type = 0 ;
car->type = 1 ;
ch->mod = mod ;
ch->car = car ;
return ch ;
}
static void OPLL_CH_delete(OPLL_CH *ch)
{
OPLL_SLOT_delete(ch->mod) ;
OPLL_SLOT_delete(ch->car) ;
free(ch) ;
}
OPLL *OPLL_new(void)
{
OPLL *opll ;
OPLL_CH *ch[9] ;
OPLL_PATCH *patch[19*2] ;
int i, j ;
for( i = 0 ; i < 19*2 ; i++ )
{
patch[i] = calloc(sizeof(OPLL_PATCH),1) ;
if(patch[i] == NULL)
{
for ( j = i ; i > 0 ; i++ ) free(patch[j-1]) ;
return NULL ;
}
}
for( i = 0 ; i < 9 ; i++ )
{
ch[i] = OPLL_CH_new() ;
if(ch[i]==NULL)
{
for ( j = i ; i > 0 ; i++ ) OPLL_CH_delete(ch[j-1]) ;
for ( j = 0 ; j < 19*2 ; j++ ) free(patch[j]) ;
return NULL ;
}
}
opll = malloc(sizeof(OPLL)) ;
if(opll == NULL) return NULL ;
for ( i = 0 ; i < 19*2 ; i++ )
opll->patch[i] = patch[i] ;
for ( i = 0 ; i <9 ; i++)
{
opll->ch[i] = ch[i] ;
opll->slot[i*2+0] = opll->ch[i]->mod ;
opll->slot[i*2+1] = opll->ch[i]->car ;
}
for ( i = 0 ; i < 18 ; i++)
{
opll->slot[i]->plfo_am = &opll->lfo_am ;
opll->slot[i]->plfo_pm = &opll->lfo_pm ;
}
opll->mask = 0 ;
OPLL_reset(opll) ;
OPLL_reset_patch(opll,0) ;
opll->masterVolume = 32 ;
return opll ;
}
void OPLL_delete(OPLL *opll)
{
int i ;
for ( i = 0 ; i < 9 ; i++ )
OPLL_CH_delete(opll->ch[i]) ;
for ( i = 0 ; i < 19*2 ; i++ )
free(opll->patch[i]) ;
free(opll) ;
}
/* Reset patch datas by system default. */
void OPLL_reset_patch(OPLL *opll, int type)
{
int i ;
for ( i = 0 ; i < 19*2 ; i++ )
OPLL_copyPatch(opll, i, &default_patch[type%OPLL_TONE_NUM][i]) ;
}
/* Reset whole of OPLL except patch datas. */
void OPLL_reset(OPLL *opll)
{
int i ;
if(!opll) return ;
opll->adr = 0 ;
opll->output[0] = 0 ;
opll->output[1] = 0 ;
opll->pm_phase = 0 ;
opll->am_phase = 0 ;
opll->noise_seed =0xffff ;
opll->noiseA = 0 ;
opll->noiseB = 0 ;
opll->noiseA_phase = 0 ;
opll->noiseB_phase = 0 ;
opll->noiseA_dphase = 0 ;
opll->noiseB_dphase = 0 ;
opll->noiseA_idx = 0 ;
opll->noiseB_idx = 0 ;
for(i = 0; i < 9 ; i++)
{
OPLL_CH_reset(opll->ch[i]) ;
setPatch(opll,i,0) ;
}
for ( i = 0 ; i < 0x40 ; i++ ) OPLL_writeReg(opll, i, 0) ;
}
void OPLL_setClock(uint32 c, uint32 r)
{
clk = c ;
rate = r ;
makeDphaseTable() ;
makeDphaseARTable() ;
makeDphaseDRTable() ;
pm_dphase = (uint32)rate_adjust(PM_SPEED * PM_DP_WIDTH / (clk/72) ) ;
am_dphase = (uint32)rate_adjust(AM_SPEED * AM_DP_WIDTH / (clk/72) ) ;
}
void OPLL_init(uint32 c, uint32 r)
{
makePmTable() ;
makeAmTable() ;
makeDB2LinTable() ;
makeAdjustTable() ;
makeTllTable() ;
makeRksTable() ;
makeSinTable() ;
makeDefaultPatch() ;
OPLL_setClock(c,r) ;
}
void OPLL_close(void)
{
}
/*********************************************************
Generate wave data
*********************************************************/
/* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 2PI). */
#if ( SLOT_AMP_BITS - PG_BITS ) > 0
#define wave2_2pi(e) ( (e) >> ( SLOT_AMP_BITS - PG_BITS ))
#else
#define wave2_2pi(e) ( (e) << ( PG_BITS - SLOT_AMP_BITS ))
#endif
/* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 4PI). */
#if ( SLOT_AMP_BITS - PG_BITS - 1 ) == 0
#define wave2_4pi(e) (e)
#elif ( SLOT_AMP_BITS - PG_BITS - 1 ) > 0
#define wave2_4pi(e) ( (e) >> ( SLOT_AMP_BITS - PG_BITS - 1 ))
#else
#define wave2_4pi(e) ( (e) << ( 1 + PG_BITS - SLOT_AMP_BITS ))
#endif
/* Convert Amp(0 to EG_HEIGHT) to Phase(0 to 8PI). */
#if ( SLOT_AMP_BITS - PG_BITS - 2 ) == 0
#define wave2_8pi(e) (e)
#elif ( SLOT_AMP_BITS - PG_BITS - 2 ) > 0
#define wave2_8pi(e) ( (e) >> ( SLOT_AMP_BITS - PG_BITS - 2 ))
#else
#define wave2_8pi(e) ( (e) << ( 2 + PG_BITS - SLOT_AMP_BITS ))
#endif
/* 16bit rand */
INLINE static uint32 mrand(uint32 seed)
{
return ((seed>>15)^((seed>>12)&1)) | ((seed<<1)&0xffff) ;
}
INLINE static uint32 DEC(uint32 db)
{
if(db<DB_MUTE+DB_MUTE)
{
return Min(db+DB_POS(0.375*2),DB_MUTE-1) ;
}
else
{
return Min(db+DB_POS(0.375*2),DB_MUTE+DB_MUTE+DB_MUTE-1) ;
}
}
/* Update Noise unit */
INLINE static void update_noise(OPLL *opll)
{
opll->noise_seed = mrand(opll->noise_seed) ;
opll->whitenoise = opll->noise_seed & 1 ;
opll->noiseA_phase = (opll->noiseA_phase + opll->noiseA_dphase) ;
opll->noiseB_phase = (opll->noiseB_phase + opll->noiseB_dphase) ;
if(opll->noiseA_phase<(1<<11))
{
if(opll->noiseA_phase>16) opll->noiseA = DB_MUTE - 1 ;
}
else
{
opll->noiseA_phase &= (1<<11)-1 ;
opll->noiseA_idx = (opll->noiseA_idx+1)&63 ;
opll->noiseA = noiseAtable[opll->noiseA_idx] ;
}
if(opll->noiseB_phase<(1<<12))
{
if(opll->noiseB_phase>16) opll->noiseB = DB_MUTE - 1 ;
}
else
{
opll->noiseB_phase &= (1<<12)-1 ;
opll->noiseB_idx = (opll->noiseB_idx+1)&7 ;
opll->noiseB = noiseBtable[opll->noiseB_idx] ;
}
}
/* Update AM, PM unit */
INLINE static void update_ampm(OPLL *opll)
{
opll->pm_phase = (opll->pm_phase + pm_dphase)&(PM_DP_WIDTH - 1) ;
opll->am_phase = (opll->am_phase + am_dphase)&(AM_DP_WIDTH - 1) ;
opll->lfo_am = amtable[HIGHBITS(opll->am_phase, AM_DP_BITS - AM_PG_BITS)] ;
opll->lfo_pm = pmtable[HIGHBITS(opll->pm_phase, PM_DP_BITS - PM_PG_BITS)] ;
}
/* PG */
INLINE static uint32 calc_phase(OPLL_SLOT *slot)
{
if(slot->patch->PM)
slot->phase += (slot->dphase * (*(slot->plfo_pm))) >> PM_AMP_BITS ;
else
slot->phase += slot->dphase ;
slot->phase &= (DP_WIDTH - 1) ;
return HIGHBITS(slot->phase, DP_BASE_BITS) ;
}
/* EG */
INLINE static uint32 calc_envelope(OPLL_SLOT *slot)
{
#define S2E(x) (SL2EG((int)(x/SL_STEP))<<(EG_DP_BITS-EG_BITS))
static uint32 SL[16] = {
S2E( 0), S2E( 3), S2E( 6), S2E( 9), S2E(12), S2E(15), S2E(18), S2E(21),
S2E(24), S2E(27), S2E(30), S2E(33), S2E(36), S2E(39), S2E(42), S2E(48)
} ;
uint32 egout ;
switch(slot->eg_mode)
{
case ATTACK:
slot->eg_phase += slot->eg_dphase ;
if(EG_DP_WIDTH & slot->eg_phase)
{
egout = 0 ;
slot->eg_phase= 0 ;
slot->eg_mode = DECAY ;
UPDATE_EG(slot) ;
}
else
{
egout = AR_ADJUST_TABLE[HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS)] ;
}
break;
case DECAY:
slot->eg_phase += slot->eg_dphase ;
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS) ;
if(slot->eg_phase >= SL[slot->patch->SL])
{
if(slot->patch->EG)
{
slot->eg_phase = SL[slot->patch->SL] ;
slot->eg_mode = SUSHOLD ;
UPDATE_EG(slot) ;
}
else
{
slot->eg_phase = SL[slot->patch->SL] ;
slot->eg_mode = SUSTINE ;
UPDATE_EG(slot) ;
}
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS) ;
}
break;
case SUSHOLD:
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS) ;
if(slot->patch->EG == 0)
{
slot->eg_mode = SUSTINE ;
UPDATE_EG(slot) ;
}
break;
case SUSTINE:
case RELEASE:
slot->eg_phase += slot->eg_dphase ;
egout = HIGHBITS(slot->eg_phase, EG_DP_BITS - EG_BITS) ;
if(egout >= (1<<EG_BITS))
{
slot->eg_mode = FINISH ;
egout = (1<<EG_BITS) - 1 ;
}
break;
case FINISH:
egout = (1<<EG_BITS) - 1 ;
break ;
default:
egout = (1<<EG_BITS) - 1 ;
break;
}
if(slot->patch->AM) egout = EG2DB(egout+slot->tll) + *(slot->plfo_am) ;
else egout = EG2DB(egout+slot->tll) ;
if(egout >= DB_MUTE) egout = DB_MUTE-1;
return egout ;
}
INLINE static int32 calc_slot_car(OPLL_SLOT *slot, int32 fm)
{
slot->egout = calc_envelope(slot) ;
slot->pgout = calc_phase(slot) ;
if(slot->egout>=(DB_MUTE-1)) return 0 ;
return DB2LIN_TABLE[slot->sintbl[(slot->pgout+wave2_8pi(fm))&(PG_WIDTH-1)] + slot->egout] ;
}
INLINE static int32 calc_slot_mod(OPLL_SLOT *slot)
{
int32 fm ;
slot->output[1] = slot->output[0] ;
slot->egout = calc_envelope(slot) ;
slot->pgout = calc_phase(slot) ;
if(slot->egout>=(DB_MUTE-1))
{
slot->output[0] = 0 ;
}
else if(slot->patch->FB!=0)
{
fm = wave2_4pi(slot->feedback) >> (7 - slot->patch->FB) ;
slot->output[0] = DB2LIN_TABLE[slot->sintbl[(slot->pgout+fm)&(PG_WIDTH-1)] + slot->egout] ;
}
else
{
slot->output[0] = DB2LIN_TABLE[slot->sintbl[slot->pgout] + slot->egout] ;
}
slot->feedback = (slot->output[1] + slot->output[0])>>1 ;
return slot->feedback ;
}
INLINE static int32 calc_slot_tom(OPLL_SLOT *slot)
{
slot->egout = calc_envelope(slot) ;
slot->pgout = calc_phase(slot) ;
if(slot->egout>=(DB_MUTE-1)) return 0 ;
return DB2LIN_TABLE[slot->sintbl[slot->pgout] + slot->egout] ;
}
/* calc SNARE slot */
INLINE static int32 calc_slot_snare(OPLL_SLOT *slot, uint32 whitenoise)
{
slot->egout = calc_envelope(slot) ;
slot->pgout = calc_phase(slot) ;
if(slot->egout>=(DB_MUTE-1)) return 0 ;
if(whitenoise)
return DB2LIN_TABLE[snaretable[slot->pgout] + slot->egout] + DB2LIN_TABLE[slot->egout + 6] ;
else
return DB2LIN_TABLE[snaretable[slot->pgout] + slot->egout] ;
}
INLINE static int32 calc_slot_cym(OPLL_SLOT *slot, int32 a, int32 b, int32 c)
{
slot->egout = calc_envelope(slot) ;
if(slot->egout>=(DB_MUTE-1)) return 0 ;
return DB2LIN_TABLE[slot->egout+a]
+ (( DB2LIN_TABLE[slot->egout+b] + DB2LIN_TABLE[slot->egout+c] ) >> 2 );
}
INLINE static int32 calc_slot_hat(OPLL_SLOT *slot, int32 a, int32 b, int32 c, uint32 whitenoise)
{
slot->egout = calc_envelope(slot) ;
if(slot->egout>=(DB_MUTE-1)) return 0 ;
if(whitenoise)
{
return DB2LIN_TABLE[slot->egout+a]
+ (( DB2LIN_TABLE[slot->egout+b] + DB2LIN_TABLE[slot->egout+c] ) >> 2 );
}
else
{
return 0 ;
}
}
int16 OPLL_calc(OPLL *opll)
{
int32 inst = 0 , perc = 0 , out = 0 ;
int32 rythmC = 0, rythmH = 0;
int i ;
update_ampm(opll) ;
update_noise(opll) ;
for(i = 0 ; i < 6 ; i++)
if(!(opll->mask&OPLL_MASK_CH(i))&&(opll->CAR(i)->eg_mode!=FINISH))
inst += calc_slot_car(opll->CAR(i),calc_slot_mod(opll->MOD(i))) ;
if(!opll->rythm_mode)
{
for(i = 6 ; i < 9 ; i++)
if(!(opll->mask&OPLL_MASK_CH(i))&&(opll->CAR(i)->eg_mode!=FINISH))
inst += calc_slot_car(opll->CAR(i),calc_slot_mod(opll->MOD(i))) ;
}
else
{
opll->MOD(7)->pgout = calc_phase(opll->MOD(7)) ;
opll->CAR(8)->pgout = calc_phase(opll->CAR(8)) ;
if(opll->MOD(7)->phase<256) rythmH = DB_NEG(12.0) ; else rythmH = DB_MUTE - 1 ;
if(opll->CAR(8)->phase<256) rythmC = DB_NEG(12.0) ; else rythmC = DB_MUTE - 1 ;
if(!(opll->mask&OPLL_MASK_BD)&&(opll->CAR(6)->eg_mode!=FINISH))
perc += calc_slot_car(opll->CAR(6),calc_slot_mod(opll->MOD(6))) ;
if(!(opll->mask&OPLL_MASK_HH)&&(opll->MOD(7)->eg_mode!=FINISH))
perc += calc_slot_hat(opll->MOD(7), opll->noiseA, opll->noiseB, rythmH, opll->whitenoise) ;
if(!(opll->mask&OPLL_MASK_SD)&&(opll->CAR(7)->eg_mode!=FINISH))
perc += calc_slot_snare(opll->CAR(7), opll->whitenoise) ;
if(!(opll->mask&OPLL_MASK_TOM)&&(opll->MOD(8)->eg_mode!=FINISH))
perc += calc_slot_tom(opll->MOD(8)) ;
if(!(opll->mask&OPLL_MASK_CYM)&&(opll->CAR(8)->eg_mode!=FINISH))
perc += calc_slot_cym(opll->CAR(8), opll->noiseA, opll->noiseB, rythmC) ;
}
#if SLOT_AMP_BITS > 8
inst = (inst >> (SLOT_AMP_BITS - 8)) ;
perc = (perc >> (SLOT_AMP_BITS - 9)) ;
#else
inst = (inst << (8 - SLOT_AMP_BITS)) ;
perc = (perc << (9 - SLOT_AMP_BITS)) ;
#endif
out = ((inst + perc) * opll->masterVolume ) >> 2 ;
if(out>32767) return 32767 ;
if(out<-32768) return -32768 ;
return (int16)out ;
}
uint32 OPLL_setMask(OPLL *opll, uint32 mask)
{
uint32 ret ;
if(opll)
{
ret = opll->mask ;
opll->mask = mask ;
return ret ;
}
else return 0 ;
}
uint32 OPLL_toggleMask(OPLL *opll, uint32 mask)
{
uint32 ret ;
if(opll)
{
ret = opll->mask ;
opll->mask ^= mask ;
return ret ;
}
else return 0 ;
}
/****************************************************
Interfaces
*****************************************************/
void OPLL_writeReg(OPLL *opll, uint32 reg, uint32 data){
int i,v,ch ;
data = data&0xff ;
reg = reg&0x3f ;
switch(reg)
{
case 0x00:
opll->patch[0]->AM = (data>>7)&1 ;
opll->patch[0]->PM = (data>>6)&1 ;
opll->patch[0]->EG = (data>>5)&1 ;
opll->patch[0]->KR = (data>>4)&1 ;
opll->patch[0]->ML = (data)&15 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_PG(opll->MOD(i)) ;
UPDATE_RKS(opll->MOD(i)) ;
UPDATE_EG(opll->MOD(i)) ;
}
}
break ;
case 0x01:
opll->patch[1]->AM = (data>>7)&1 ;
opll->patch[1]->PM = (data>>6)&1 ;
opll->patch[1]->EG = (data>>5)&1 ;
opll->patch[1]->KR = (data>>4)&1 ;
opll->patch[1]->ML = (data)&15 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_PG(opll->CAR(i)) ;
UPDATE_RKS(opll->CAR(i)) ;
UPDATE_EG(opll->CAR(i)) ;
}
}
break;
case 0x02:
opll->patch[0]->KL = (data>>6)&3 ;
opll->patch[0]->TL = (data)&63 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_TLL(opll->MOD(i)) ;
}
}
break ;
case 0x03:
opll->patch[1]->KL = (data>>6)&3 ;
opll->patch[1]->WF = (data>>4)&1 ;
opll->patch[0]->WF = (data>>3)&1 ;
opll->patch[0]->FB = (data)&7 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_WF(opll->MOD(i)) ;
UPDATE_WF(opll->CAR(i)) ;
}
}
break ;
case 0x04:
opll->patch[0]->AR = (data>>4)&15 ;
opll->patch[0]->DR = (data)&15 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_EG(opll->MOD(i)) ;
}
}
break ;
case 0x05:
opll->patch[1]->AR = (data>>4)&15 ;
opll->patch[1]->DR = (data)&15 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_EG(opll->CAR(i)) ;
}
}
break ;
case 0x06:
opll->patch[0]->SL = (data>>4)&15 ;
opll->patch[0]->RR = (data)&15 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_EG(opll->MOD(i)) ;
}
}
break ;
case 0x07:
opll->patch[1]->SL = (data>>4)&15 ;
opll->patch[1]->RR = (data)&15 ;
for(i=0;i<9;i++)
{
if(opll->ch[i]->patch_number==0)
{
UPDATE_EG(opll->CAR(i)) ;
}
}
break ;
case 0x0e:
if(opll->rythm_mode)
{
opll->slot_on_flag[SLOT_BD1] = (opll->reg[0x0e]&0x10) | (opll->reg[0x26]&0x10) ;
opll->slot_on_flag[SLOT_BD2] = (opll->reg[0x0e]&0x10) | (opll->reg[0x26]&0x10) ;
opll->slot_on_flag[SLOT_SD] = (opll->reg[0x0e]&0x08) | (opll->reg[0x27]&0x10) ;
opll->slot_on_flag[SLOT_HH] = (opll->reg[0x0e]&0x01) | (opll->reg[0x27]&0x10) ;
opll->slot_on_flag[SLOT_TOM] = (opll->reg[0x0e]&0x04) | (opll->reg[0x28]&0x10) ;
opll->slot_on_flag[SLOT_CYM] = (opll->reg[0x0e]&0x02) | (opll->reg[0x28]&0x10) ;
}
else
{
opll->slot_on_flag[SLOT_BD1] = (opll->reg[0x26]&0x10) ;
opll->slot_on_flag[SLOT_BD2] = (opll->reg[0x26]&0x10) ;
opll->slot_on_flag[SLOT_SD] = (opll->reg[0x27]&0x10) ;
opll->slot_on_flag[SLOT_HH] = (opll->reg[0x27]&0x10) ;
opll->slot_on_flag[SLOT_TOM] = (opll->reg[0x28]&0x10) ;
opll->slot_on_flag[SLOT_CYM] = (opll->reg[0x28]&0x10) ;
}
if(((data>>5)&1)^(opll->rythm_mode))
{
setRythmMode(opll,(data&32)>>5) ;
}
if(opll->rythm_mode)
{
if(data&0x10) keyOn_BD(opll) ; else keyOff_BD(opll) ;
if(data&0x8) keyOn_SD(opll) ; else keyOff_SD(opll) ;
if(data&0x4) keyOn_TOM(opll) ; else keyOff_TOM(opll) ;
if(data&0x2) keyOn_CYM(opll) ; else keyOff_CYM(opll) ;
if(data&0x1) keyOn_HH(opll) ; else keyOff_HH(opll) ;
}
UPDATE_ALL(opll->MOD(6)) ;
UPDATE_ALL(opll->CAR(6)) ;
UPDATE_ALL(opll->MOD(7)) ;
UPDATE_ALL(opll->CAR(7)) ;
UPDATE_ALL(opll->MOD(8)) ;
UPDATE_ALL(opll->CAR(8)) ;
break ;
case 0x0f:
break ;
case 0x10: case 0x11: case 0x12: case 0x13:
case 0x14: case 0x15: case 0x16: case 0x17:
case 0x18:
ch = reg-0x10 ;
setFnumber(opll, ch, data + ((opll->reg[0x20+ch]&1)<<8)) ;
UPDATE_ALL(opll->MOD(ch));
UPDATE_ALL(opll->CAR(ch));
switch(reg)
{
case 0x17:
opll->noiseA_dphase = (data + ((opll->reg[0x27]&1)<<8)) << ((opll->reg[0x27]>>1)&7) ;
break ;
case 0x18:
opll->noiseB_dphase = (data + ((opll->reg[0x28]&1)<<8)) << ((opll->reg[0x28]>>1)&7) ;
break;
default:
break ;
}
break ;
case 0x20: case 0x21: case 0x22: case 0x23:
case 0x24: case 0x25: case 0x26: case 0x27:
case 0x28:
ch = reg - 0x20 ;
setFnumber(opll, ch, ((data&1)<<8) + opll->reg[0x10+ch]) ;
setBlock(opll, ch, (data>>1)&7 ) ;
opll->slot_on_flag[ch*2] = opll->slot_on_flag[ch*2+1] = (opll->reg[reg])&0x10 ;
if(opll->rythm_mode)
{
switch(reg)
{
case 0x26:
opll->slot_on_flag[SLOT_BD1] |= (opll->reg[0x0e])&0x10 ;
opll->slot_on_flag[SLOT_BD2] |= (opll->reg[0x0e])&0x10 ;
break ;
case 0x27:
opll->noiseA_dphase = (((data&1)<<8) + opll->reg[0x17] ) << ((data>>1)&7) ;
opll->slot_on_flag[SLOT_SD] |= (opll->reg[0x0e])&0x08 ;
opll->slot_on_flag[SLOT_HH] |= (opll->reg[0x0e])&0x01 ;
break;
case 0x28:
opll->noiseB_dphase = (((data&1)<<8) + opll->reg[0x18] ) << ((data>>1)&7);
opll->slot_on_flag[SLOT_TOM] |= (opll->reg[0x0e])&0x04 ;
opll->slot_on_flag[SLOT_CYM] |= (opll->reg[0x0e])&0x02 ;
break ;
default:
break ;
}
}
if((opll->reg[reg]^data)&0x20) setSustine(opll, ch, (data>>5)&1) ;
if(data&0x10) keyOn(opll, ch) ; else keyOff(opll, ch) ;
UPDATE_ALL(opll->MOD(ch)) ;
UPDATE_ALL(opll->CAR(ch)) ;
break ;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38:
i = (data>>4)&15 ;
v = data&15 ;
if((opll->rythm_mode)&&(reg>=0x36))
{
switch(reg)
{
case 0x37 :
setSlotVolume(opll->MOD(7), i<<2) ;
break ;
case 0x38 :
setSlotVolume(opll->MOD(8), i<<2) ;
break ;
}
}
else
{
setPatch(opll, reg-0x30, i) ;
}
setVolume(opll, reg-0x30, v<<2) ;
UPDATE_ALL(opll->MOD(reg-0x30)) ;
UPDATE_ALL(opll->CAR(reg-0x30)) ;
break ;
default:
break ;
}
opll->reg[reg] = (unsigned char)data ;
}
void OPLL_writeIO(OPLL *opll, uint32 adr, uint32 val)
{
adr &= 0xff ;
if(adr == 0x7C) opll->adr = val ;
else if(adr == 0x7D) OPLL_writeReg(opll, opll->adr, val) ;
}