AxibugEmuOnline/virtuanessrc097-master/NES/ApuEX/APU_FDS.cpp

385 lines
19 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//////////////////////////////////////////////////////////////////////////
// //
// FDS sound //
// Norix //
// written 2002/06/30 //
// last modify ----/--/-- //
//////////////////////////////////////////////////////////////////////////
#include "DebugOut.h"
#include "APU_FDS.h"
#include "state.h"
APU_FDS::APU_FDS()
{
ZEROMEMORY( &fds, sizeof(fds) );
ZEROMEMORY( &fds_sync, sizeof(fds) );
ZEROMEMORY( output_buf, sizeof(output_buf) );
sampling_rate = 22050;
}
APU_FDS::~APU_FDS()
{
}
void APU_FDS::Reset( FLOAT fClock, INT nRate )
{
ZEROMEMORY( &fds, sizeof(fds) );
ZEROMEMORY( &fds_sync, sizeof(fds) );
sampling_rate = nRate;
}
void APU_FDS::Setup( FLOAT fClock, INT nRate )
{
sampling_rate = nRate;
}
void APU_FDS::WriteSub( WORD addr, BYTE data, FDSSOUND& ch, double rate )
{
if( addr < 0x4040 || addr > 0x40BF )
return;
ch.reg[addr-0x4040] = data;
if( addr >= 0x4040 && addr <= 0x407F ) {
if( ch.wave_setup ) {
ch.main_wavetable[addr-0x4040] = 0x20-((INT)data&0x3F);
}
} else {
switch( addr ) {
case 0x4080: // Volume Envelope
ch.volenv_mode = data>>6;
if( data&0x80 ) {
ch.volenv_gain = data&0x3F;
// 即時反映
if( !ch.main_addr ) {
ch.now_volume = (ch.volenv_gain<0x21)?ch.volenv_gain:0x20;
}
}
// エンベロープ1段階の演算
ch.volenv_decay = data&0x3F;
ch.volenv_phaseacc = (double)ch.envelope_speed * (double)(ch.volenv_decay+1) * rate / (232.0*960.0);
break;
case 0x4082: // Main Frequency(Low)
ch.main_frequency = (ch.main_frequency&~0x00FF)|(INT)data;
break;
case 0x4083: // Main Frequency(High)
ch.main_enable = (~data)&(1<<7);
ch.envelope_enable = (~data)&(1<<6);
if( !ch.main_enable ) {
ch.main_addr = 0;
ch.now_volume = (ch.volenv_gain<0x21)?ch.volenv_gain:0x20;
}
// ch.main_frequency = (ch.main_frequency&0x00FF)|(((INT)data&0x3F)<<8);
ch.main_frequency = (ch.main_frequency&0x00FF)|(((INT)data&0x0F)<<8);
break;
case 0x4084: // Sweep Envelope
ch.swpenv_mode = data>>6;
if( data&0x80 ) {
ch.swpenv_gain = data&0x3F;
}
// エンベロープ1段階の演算
ch.swpenv_decay = data&0x3F;
ch.swpenv_phaseacc = (double)ch.envelope_speed * (double)(ch.swpenv_decay+1) * rate / (232.0*960.0);
break;
case 0x4085: // Sweep Bias
if( data&0x40 ) ch.sweep_bias = (data&0x3f)-0x40;
else ch.sweep_bias = data&0x3f;
ch.lfo_addr = 0;
break;
case 0x4086: // Effector(LFO) Frequency(Low)
ch.lfo_frequency = (ch.lfo_frequency&(~0x00FF))|(INT)data;
break;
case 0x4087: // Effector(LFO) Frequency(High)
ch.lfo_enable = (~data&0x80);
ch.lfo_frequency = (ch.lfo_frequency&0x00FF)|(((INT)data&0x0F)<<8);
break;
case 0x4088: // Effector(LFO) wavetable
if( !ch.lfo_enable ) {
// FIFO?
for( INT i = 0; i < 31; i++ ) {
ch.lfo_wavetable[i*2+0] = ch.lfo_wavetable[(i+1)*2+0];
ch.lfo_wavetable[i*2+1] = ch.lfo_wavetable[(i+1)*2+1];
}
ch.lfo_wavetable[31*2+0] = data&0x07;
ch.lfo_wavetable[31*2+1] = data&0x07;
}
break;
case 0x4089: // Sound control
{
INT tbl[] = {30, 20, 15, 12};
ch.master_volume = tbl[data&3];
ch.wave_setup = data&0x80;
}
break;
case 0x408A: // Sound control 2
ch.envelope_speed = data;
break;
default:
break;
}
}
}
// APUレンダラ側から呼ばれる
void APU_FDS::Write( WORD addr, BYTE data )
{
// サンプリングレート基準
WriteSub( addr, data, fds, (double)sampling_rate );
}
BYTE APU_FDS::Read ( WORD addr )
{
BYTE data = addr>>8;
if( addr >= 0x4040 && addr <= 0x407F ) {
data = fds.main_wavetable[addr&0x3F] | 0x40;
} else
if( addr == 0x4090 ) {
data = (fds.volenv_gain&0x3F)|0x40;
} else
if( addr == 0x4092 ) {
data = (fds.swpenv_gain&0x3F)|0x40;
}
return data;
}
INT APU_FDS::Process( INT channel )
{
// Envelope unit
if( fds.envelope_enable && fds.envelope_speed ) {
// Volume envelope
if( fds.volenv_mode < 2 ) {
double decay = ((double)fds.envelope_speed * (double)(fds.volenv_decay+1) * (double)sampling_rate) / (232.0*960.0);
fds.volenv_phaseacc -= 1.0;
while( fds.volenv_phaseacc < 0.0 ) {
fds.volenv_phaseacc += decay;
if( fds.volenv_mode == 0 ) {
// 減少モード
if( fds.volenv_gain )
fds.volenv_gain--;
} else
if( fds.volenv_mode == 1 ) {
if( fds.volenv_gain < 0x20 )
fds.volenv_gain++;
}
}
}
// Sweep envelope
if( fds.swpenv_mode < 2 ) {
double decay = ((double)fds.envelope_speed * (double)(fds.swpenv_decay+1) * (double)sampling_rate) / (232.0*960.0);
fds.swpenv_phaseacc -= 1.0;
while( fds.swpenv_phaseacc < 0.0 ) {
fds.swpenv_phaseacc += decay;
if( fds.swpenv_mode == 0 ) {
// 減少モード
if( fds.swpenv_gain )
fds.swpenv_gain--;
} else
if( fds.swpenv_mode == 1 ) {
if( fds.swpenv_gain < 0x20 )
fds.swpenv_gain++;
}
}
}
}
// Effector(LFO) unit
INT sub_freq = 0;
// if( fds.lfo_enable && fds.envelope_speed && fds.lfo_frequency ) {
if( fds.lfo_enable ) {
if (fds.lfo_frequency)
{
static int tbl[8] = { 0, 1, 2, 4, 0, -4, -2, -1};
fds.lfo_phaseacc -= (1789772.5*(double)fds.lfo_frequency)/65536.0;
while( fds.lfo_phaseacc < 0.0 ) {
fds.lfo_phaseacc += (double)sampling_rate;
if( fds.lfo_wavetable[fds.lfo_addr] == 4 )
fds.sweep_bias = 0;
else
fds.sweep_bias += tbl[fds.lfo_wavetable[fds.lfo_addr]];
fds.lfo_addr = (fds.lfo_addr+1)&63;
}
}
if( fds.sweep_bias > 63 )
fds.sweep_bias -= 128;
else if( fds.sweep_bias < -64 )
fds.sweep_bias += 128;
INT sub_multi = fds.sweep_bias * fds.swpenv_gain;
if( sub_multi & 0x0F ) {
// 16で割り切れない場合
sub_multi = (sub_multi / 16);
if( fds.sweep_bias >= 0 )
sub_multi += 2; // 正の場合
else
sub_multi -= 1; // 負の場合
} else {
// 16で割り切れる場合
sub_multi = (sub_multi / 16);
}
// 193を超えると-258する(-64へラップ)
if( sub_multi > 193 )
sub_multi -= 258;
// -64を下回ると+256する(192へラップ)
if( sub_multi < -64 )
sub_multi += 256;
sub_freq = (fds.main_frequency) * sub_multi / 64;
}
// Main unit
INT output = 0;
if( fds.main_enable && fds.main_frequency && !fds.wave_setup ) {
INT freq;
INT main_addr_old = fds.main_addr;
freq = (fds.main_frequency+sub_freq)*1789772.5/65536.0;
fds.main_addr = (fds.main_addr+freq+64*sampling_rate)%(64*sampling_rate);
// 1周期を超えたらボリューム更新
if( main_addr_old > fds.main_addr )
fds.now_volume = (fds.volenv_gain<0x21)?fds.volenv_gain:0x20;
output = fds.main_wavetable[(fds.main_addr / sampling_rate)&0x3f] * 8 * fds.now_volume * fds.master_volume / 30;
if( fds.now_volume )
fds.now_freq = freq * 4;
else
fds.now_freq = 0;
} else {
fds.now_freq = 0;
output = 0;
}
// LPF
#if 1
output = (output_buf[0] * 2 + output) / 3;
output_buf[0] = output;
#else
output = (output_buf[0] + output_buf[1] + output) / 3;
output_buf[0] = output_buf[1];
output_buf[1] = output;
#endif
fds.output = output;
return fds.output;
}
// CPU側から呼ばれる
void APU_FDS::SyncWrite( WORD addr, BYTE data )
{
// クロック基準
WriteSub( addr, data, fds_sync, 1789772.5 );
}
BYTE APU_FDS::SyncRead( WORD addr )
{
BYTE data = addr>>8;
if( addr >= 0x4040 && addr <= 0x407F ) {
data = fds_sync.main_wavetable[addr&0x3F] | 0x40;
} else
if( addr == 0x4090 ) {
data = (fds_sync.volenv_gain&0x3F)|0x40;
} else
if( addr == 0x4092 ) {
data = (fds_sync.swpenv_gain&0x3F)|0x40;
}
return data;
}
BOOL APU_FDS::Sync( INT cycles )
{
// Envelope unit
if( fds_sync.envelope_enable && fds_sync.envelope_speed ) {
// Volume envelope
double decay;
if( fds_sync.volenv_mode < 2 ) {
decay = ((double)fds_sync.envelope_speed * (double)(fds_sync.volenv_decay+1) * 1789772.5) / (232.0*960.0);
fds_sync.volenv_phaseacc -= (double)cycles;
while( fds_sync.volenv_phaseacc < 0.0 ) {
fds_sync.volenv_phaseacc += decay;
if( fds_sync.volenv_mode == 0 ) {
// 減少モード
if( fds_sync.volenv_gain )
fds_sync.volenv_gain--;
} else
if( fds_sync.volenv_mode == 1 ) {
// 増加モード
if( fds_sync.volenv_gain < 0x20 )
fds_sync.volenv_gain++;
}
}
}
// Sweep envelope
if( fds_sync.swpenv_mode < 2 ) {
decay = ((double)fds_sync.envelope_speed * (double)(fds_sync.swpenv_decay+1) * 1789772.5) / (232.0*960.0);
fds_sync.swpenv_phaseacc -= (double)cycles;
while( fds_sync.swpenv_phaseacc < 0.0 ) {
fds_sync.swpenv_phaseacc += decay;
if( fds_sync.swpenv_mode == 0 ) {
// 減少モード
if( fds_sync.swpenv_gain )
fds_sync.swpenv_gain--;
} else
if( fds_sync.swpenv_mode == 1 ) {
// 増加モード
if( fds_sync.swpenv_gain < 0x20 )
fds_sync.swpenv_gain++;
}
}
}
}
return FALSE;
}
INT APU_FDS::GetFreq( INT channel )
{
return fds.now_freq;
}
INT APU_FDS::GetStateSize()
{
return sizeof(fds) + sizeof(fds_sync);
}
void APU_FDS::SaveState( LPBYTE p )
{
SETBLOCK( p, &fds, sizeof(fds) );
SETBLOCK( p, &fds_sync, sizeof(fds_sync) );
}
void APU_FDS::LoadState( LPBYTE p )
{
GETBLOCK( p, &fds, sizeof(fds) );
GETBLOCK( p, &fds_sync, sizeof(fds_sync) );
}