ctai/3rdparty/MicroTeX/res/SAMPLES.tex
2025-03-07 22:11:10 +08:00

262 lines
9.7 KiB
TeX
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

%Side sets test
\sideset{^\backprime}{'}
\sum_{x=1}^{\infty} x
\sideset{a_1^2}{}\sum_{x=1}^\infty x_0
\\
\sideset{_\text{left bottom}'''}{_{\text{right bottom}}'''}
\sum_{\text{quite long text}}^\infty x
\\
\sideset{}{'}
\sum_{n<k,\;\text{$n$ odd}} nE_n
\\
\sideset{}{'}
\sum^{n<k,\;\text{$n$ odd}} nE_n
\\
M_x''' M'''_x M^{'''}_x M_x{'''} M^{\prime\backprime}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Cyrillic and Greek alphabet
\begin{array}{lr}
\mbox{\textcolor{Blue}{Russian}}&\mbox{\textcolor{Melon}{Greek}}\\
\mbox{привет мир}&\mbox{γειά κόσμο}\\
\mbox{привет мир}&\mbox{γειά κόσμο}\\
\mathbf{\mbox{привет мир}}&\mathbf{\mbox{γειά κόσμο}}\\
\mathit{\mbox{привет мир}}&\mathit{\mbox{γειά κόσμο}}\\
\mathsf{\mbox{привет мир}}&\mathsf{\mbox{γειά κόσμο}}\\
\mathtt{\mbox{привет мир}}&\mathtt{\mbox{γειά κόσμο}}\\
\mathbf{\mathit{\mbox{привет мир}}}&\mathbf{\mathit{\mbox{γειά κόσμο}}}\\
\mathbf{\mathsf{\mbox{привет мир}}}&\mathbf{\mathsf{\mbox{γειά κόσμο}}}\\
\mathsf{\mathit{\mbox{привет мир}}}&\mathsf{\mathit{\mbox{γειά κόσμο}}}\\
&\\
\mbox{\textcolor{Salmon}{Bulgarian}}&\mbox{\textcolor{Tan}{Serbian}}\\
\mbox{здравей свят}&\mbox{Хелло уорлд}\\
&\\
\mbox{\textcolor{Turquoise}{Bielorussian}}&\mbox{\textcolor{LimeGreen}{Ukrainian}}\\
\mbox{прывітаньне Свет}&\mbox{привіт світ}\\
\end{array}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Complex formula test
\begin{array}{l}
\forall\varepsilon\in\mathbb{R}_+^*\ \exists\eta>0\ |x-x_0|\leq\eta\Longrightarrow|f(x)-f(x_0)|\leq\varepsilon\\
\det
\begin{bmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&\ddots&&\vdots\\
\vdots&&\ddots&\vdots\\
a_{n1}&\cdots&\cdots&a_{nn}
\end{bmatrix}
\overset{\mathrm{def}}{=}\sum_{\sigma\in\mathfrak{S}_n}\varepsilon(\sigma)\prod_{k=1}^n a_{k\sigma(k)}\\
\sideset{_\alpha^\beta}{_\gamma^\delta}{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\\
\int_0^\infty{x^{2n} e^{-a x^2}\,dx} = \frac{2n-1}{2a}
\int_0^\infty{x^{2(n-1)} e^{-a x^2}\,dx} = \frac{(2n-1)!!}{2^{n+1}} \sqrt{\frac{\pi}{a^{2n+1}}}\\
\int_a^b{f(x)\,dx} = (b - a) \sum\limits_{n = 1}^\infty
{\sum\limits_{m = 1}^{2^n - 1} {\left( { - 1} \right)^{m + 1} } } 2^{ - n} f(a + m\left( {b - a} \right)2^{-n} )\\
\int_{-\pi}^{\pi} \sin(\alpha x) \sin^n(\beta x) dx = \textstyle{\left \{
\begin{array}{cc}
(-1)^{(n+1)/2} (-1)^m \frac{2 \pi}{2^n} \binom{n}{m} & n \mbox{ odd},\ \alpha = \beta (2m-n) \\
0 & \mbox{otherwise} \\ \end{array} \right .}\\
L = \int_a^b \sqrt{ \left|\sum_{i,j=1}^ng_{ij}(\gamma(t))\left(\frac{d}{dt}x^i\circ\gamma(t)\right)
\left(\frac{d}{dt}x^j\circ\gamma(t)\right)\right|}\,dt\\
\begin{array}{rl}
s &= \int_a^b\left\|\frac{d}{dt}\vec{r}\,(u(t),v(t))\right\|\,dt \\
&= \int_a^b \sqrt{u'(t)^2\,\vec{r}_u\cdot\vec{r}_u + 2u'(t)v'(t)\, \vec{r}_u\cdot
\vec{r}_v+ v'(t)^2\,\vec{r}_v\cdot\vec{r}_v}\,\,\, dt.
\end{array}\\
\end{array}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\definecolor{gris}{gray}{0.9}
\definecolor{noir}{rgb}{0,0,0}
\definecolor{bleu}{rgb}{0,0,1}
\fatalIfCmdConflict{false}
\newcommand{\pa}{\left|}
\begin{array}{c}
\LaTeX\\
\begin{split}
&Тепловой\ поток\ \mathrm{Тепловой\ поток}\ \mathtt{Тепловой\ поток}\\
&\boldsymbol{\mathrm{Тепловой\ поток}}\ \mathsf{Тепловой\ поток}\\
|I_2| &= \pa\int_0^T\psi(t)\left\{ u(a,t)-\int_{\gamma(t)}^a \frac{d\theta}{k} (\theta,t) \int_a^\theta c(\xi)
u_t (\xi,t)\,d\xi\right\}dt\right|\\
&\le C_6 \Bigg|\pa f \int_\Omega \pa\widetilde{S}^{-1,0}_{a,-}
W_2(\Omega, \Gamma_1)\right|\ \right|\left| |u|\overset{\circ}{\to} W_2^{\widetilde{A}}(\Omega\Gamma_r,T)\right|\Bigg|\\
&\\
&\begin{pmatrix}
\alpha&\beta&\gamma&\delta\\
\aleph&\beth&\gimel&\daleth\\
\mathfrak{A}&\mathfrak{B}&\mathfrak{C}&\mathfrak{D}\\
\boldsymbol{\mathfrak{a}}&\boldsymbol{\mathfrak{b}}&\boldsymbol{\mathfrak{c}}&\boldsymbol{\mathfrak{d}}
\end{pmatrix}
\quad{(a+b)}^{\frac{n}{2}}=\sqrt{\sum_{k=0}^n\tbinom{n}{k}a^kb^{n-k}}\quad
\Biggl(\biggl(\Bigl(\bigl(()\bigr)\Bigr)\biggr)\Biggr)\\
&\forall\varepsilon\in\mathbb{R}_+^*\ \exists\eta>0\ |x-x_0|\leq\eta\Longrightarrow|f(x)-f(x_0)|\leq\varepsilon\\
&\det
\begin{bmatrix}
a_{11}&a_{12}&\cdots&a_{1n}\\
a_{21}&\ddots&&\vdots\\
\vdots&&\ddots&\vdots\\
a_{n1}&\cdots&\cdots&a_{nn}
\end{bmatrix}
\overset{\mathrm{def}}{=}\sum_{\sigma\in\mathfrak{S}_n}\varepsilon(\sigma)\prod_{k=1}^n a_{k\sigma(k)}\\
&\Delta f(x,y)=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}\qquad\qquad \fcolorbox{noir}{gris}
{n!\underset{n\rightarrow+\infty}{\sim} {\left(\frac{n}{e}\right)}^n\sqrt{2\pi n}}\\
&\sideset{_\alpha^\beta}{_\gamma^\delta}{
\begin{pmatrix}
a&b\\
c&d
\end{pmatrix}}
\xrightarrow[T]{n\pm i-j}\sideset{^t}{}A\xleftarrow{\overrightarrow{u}\wedge\overrightarrow{v}}
\underleftrightarrow{\iint_{\mathds{R}^2}e^{-\left(x^2+y^2\right)}\,\mathrm{d}x\mathrm{d}y}
\end{split}\\
\rotatebox{30}{\sum_{n=1}^{+\infty}}\quad\mbox{Mirror rorriM}\reflectbox{\mbox{Mirror rorriM}}
\end{array}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{array}{|c|l|||r|c|}
\hline
\text{Matrix}&\multicolumn{2}{|c|}{\text{Multicolumns}}&\text{Font sizes commands}\cr
\hline
\begin{pmatrix}
\alpha_{11}&\cdots&\alpha_{1n}\cr
\hdotsfor{3}\cr
\alpha_{n1}&\cdots&\alpha_{nn}
\end{pmatrix}
&\Large \text{Large Right}&\small \text{small Left}&\tiny \text{tiny Tiny}\cr
\hline
\multicolumn{4}{|c|}{\Huge \text{Huge Multicolumns}}\cr
\hline
\end{array}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cornersize{0.2}
\begin{array}{cc}
\fbox{\text{A framed box with \textdbend}}&\shadowbox{\text{A shadowed box}}\cr
\doublebox{\text{A double framed box}}&\ovalbox{\text{An oval framed box}}\cr
\end{array}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%ASCII character
\text{!"#'()*+,-./0123456789:<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]
^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ
† ŽžŸ ¡¢£¤¥¦§¨©ª«¬­
®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Table test
\newcolumntype{s}{>{\color{#1234B6}}c}
\begin{array}{|c|c|c|s|}
\hline
\rowcolor{Tan}\multicolumn{4}{|c|}{\textcolor{white}{\bold{\text{Table Head}}}}\\
\hline
\text{Matrix}&\multicolumn{2}{|c|}{\text{Multicolumns}}&\text{Font size commands}\\
\hline
\begin{pmatrix}
\alpha_{11}&\cdots&\alpha_{1n}\\
\hdotsfor{3}\\
\alpha_{n1}&\cdots&\alpha_{nn}
\end{pmatrix}
&\large \text{Left}&\cellcolor{#00bde5}\small \textcolor{white}{\text{\bold{Right}}}
&\small \text{small Small}\\
\hline
\multicolumn{4}{|c|}{\text{Table Foot}}\\
\hline
\end{array}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\rlap{\overbrace{\phantom{1 + a + b + \cdots + z}}^{\text{total + 1}}}
1 + \underbrace{a + b + \cdots + z}_{\text{total}}
\\
\frac{a\cancel{b}}{\cancel{b}} = a;
\frac{a\bcancel{b}}{\bcancel{b}} = a;
\frac{a\xcancel{b}}{\xcancel{b}} = a;
\\
\text{A long division: }\longdiv{12345}{13}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\left\{
\begin{array}{l}
2a < -1,\\
a + 8 \ge 5,
\end{array}
\right.
\\
P_{r-j}=\begin{cases}
0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.
\end{cases}\text{Cases}
\\
P_{r-j}=\left\{\begin{array}{@{}ll@{\,}}
0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.
\end{array}\right.\text{Cases}
\\
P_{r-j}=\begin{cases}
4-x\geq 0 \\
3-x\geq 1
\end{cases}\text{Cases}
\\
\left\{\begin{array}{@{}ll}
1 & 2\\
3 & 4
\end{array}\right.\text{Equation}
\\
\left\{\begin{array}{l@{}l}
1 & 2\\
3 & 4
\end{array}\right.\text{Equation}
\\
\left\{\begin{array}{ll@{}}
1 & 2\\
3 & 4
\end{array}\right.\text{Equation}
\\
\begin{split}
H_c&=\frac{1}{2n} \sum^n_{l=0}(-1)^{l}(n-{l})^{p-2}
\sum_{l _1+\dots+ l _p=l}\prod^p_{i=1} \binom{n_i}{l _i}\\
&\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}\cdot
\Bigl[(n-l )^2-\sum^p_{j=1}(n_i-l _i)^2\Bigr].
\end{split}
\\
\begin{align}
A_1&=N_0(\lambda;\Omega)-\phi(\lambda;\Omega),\\
A_2&=\phi(\lambda;\Omega)-\phi(\lambda;\Omega),\\
\intertext{and}
A_3&=\mathcal{N}(\lambda;\omega).
\end{align}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frac{\sum_{n > 0} z^n}
{\prod_{1\leq k\leq n} (1-q^k)}
\\
\frac{{\displaystyle\sum_{n > 0} z^n}}
{{\displaystyle\prod_{1\leq k\leq n} (1-q^k)}}
\\
\frac{{\displaystyle\sum\nolimits_{n> 0} z^n}}
{{\displaystyle\prod\nolimits_{1\leq k\leq n} (1-q^k)}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+\dotsb
}}}
\\
\biggl[
\sum_i a_i\biggl\lvert\sum_j x_{ij}
\biggr\rvert^p\biggr]^{1/p}
\\
\biggl[
\sum_i a_i\Bigl\lvert\sum_j x_{ij}
\Bigr\rvert^p\biggr]^{1/p}